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Abstract
A transition metal-free NaOH mediated hydration of organo nitriles to amides under mild reaction conditions has been described. Both aliphatic and aromatic/hetero 
nitriles were smoothly converted into corresponding amides in moderate to good yields. 
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Introduction
Amides are an important key intermediate in many organic 

transformations, as well as they are basic building blocks in biological 
molecules, agrochemicals, polymers etc.[1] The amide linkage is one 
of the most important functional group in nature, because they are 
key connecter in peptides and proteins in living organisms.[2] The 
synthesis of amides were also significant importance in the field of 
pharmaceutical, medicinal chemistry. Amides are present in around 
25% of top-selling in pharmaceuticals industry. Compared to secondary 
and tertiary amides, the primary amides are important intermediates 
in organic synthesis and these are raw materials for the synthesis of 
plastics, detergents and lubricants.[3] Due to the numerous applications 
of amides,a number of elegant methods have been developed in recent 
years. Generally, the amide bonds are formed by the condensation of 
carboxylic acid and esters with amines,[4] or coupling reactions between 
alcohol/aldehydes with amines[5] and hydroamination of unsaturated 
hydrocarbons.[6] Apart from these methods, hydration of nitrilesis one 
of the classic transformation as well as simple and straightforward 
method for the synthesis of variety of amides, in green chemistry 
point of view, the nitrile hydration methods were also promote as 
atom efficiency and avoids the generation of environmental waste. 
Based on these advantages, the hydration of nitriles to amides is a well-
established method in the pharmaceutical industry for the synthesis of 
various amides in large scale production. Recently various groups were 
reported the hydration of the nitriles to amides using different catalysts 
such as acids, bases, ionic liquids, and transition metals.[7,8]

Recently, some green protocols such as, microwave assisted 
reactions, TBAH catalyst, super basic system DMSO-CsOH, KOtBu have 
been recently reported (Scheme 1).[9] In many instances the practicality 
of the methods have limitations such as harsh reaction conditions, high 
temperature, strong bases, requirement of precious metal combinations. 
Therefore, the development of convenient, practical methods for the 
hydration of nitriles to amides under transition metal-free conditions 
still holds its relevance.

Results and Discussion
In continuation of our interest on the development of green and 

sustainable methods for amides,[10] we describe herein hydration 

of nitriles to the corresponding amides using inexpensive and 
commercially available NaOH as promoter under metal-free mild 
conditions.We initiated our studies with benzonitrile (1a) as a model 
substrate, using NaOH as a promote at room temperature with isopropyl 
alcohol (IPA) as solvent, under these conditions the desired product 
(2a) was obtained in 21% isolated yield after 24 h (Table 1, entry 1). 

Based on the initial observation, we raised the reaction temperature 
(from room temperature) to 55 and 60 ºC under the same reaction 
conditions; the yield of the desired product was significantly increased 
to 86 % and 93% respectively (Table 1, entries 2 & 3). When the amount 
of base was reduced to 0.5 equivalents, the yield was dropped to 65% 
(Table 1, entry 4). Under the same conditions, we tested the reaction 
with other inorganic bases like, K2CO3, and Na2CO3 no product 
formation was observed (Table 1, entries 5 & 6). However, lower yield 
of the product was obtained with LiOH.H2O and CsOH as base (Table 
1, entries7 & 8). With KOH as a promoter, 85% yield of 2a was obtained 
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Scheme 1. Selective hydration of nitriles to amides
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carboxamides3a-b, picolinamides 3c-e, pyrazine-carboxamide 3f  and 
4-(imidazo[1,2-a]pyridin-2-yl)benzamide 3g, could be obtained in 
good yields (51-89%) under the present conditions. To our delight the 
optimized conditions were also applicable to aliphatic nitriles and afford 
the corresponding aliphatic amides 3h−i in good yields (59–63%).

Based on experimental observations and literature reports[8d, 9d] an 
ionic mechanism has been proposed for the present transformation 
(Scheme 2). Initially, IPA in presence of NaOH forms iso-propoxy anion 
intermediate, it reacts with nitrile and produces theintermediate I which 
exist as keto - enol form and easily hydrolyzes to form corresponding 
desired amide.

under the same conditions (Table 1, entry 9). Further, keeping with 
NaOH as promoter, different solvents (EtOH, H2O, CH3CN, toluene, 
DMSO andtBuOH) were screened to examine the yield of the product, 
lower yield to no reaction was observed with these solvents (Table 1, 
entries 10- 15). After screening for various parameters, the optimum 
conditions identified for the present transformation are asfollows: 1.0 
equiv. of NaOH as base, and 1.0 mL of IPA at 60 °C, 24h reaction time 
(Table 1, entry 3).

With the optimized conditions in hand, the substrate scope of 
the reaction for the hydration of various nitriles were investigated 
(Table 2).The reactions were found to be very facile with both electron 
rich and electron deficient groups. In electron donating groups such 
as -Me, -OMe, -Ph at para position of benzonitriles (2a-2d) to gives 
corresponding amides are excellent yields. Where as in the case of 
halogen assisted benzonitriles  at the para position such as –F, -Cl, -Br, 
and -I to affords the desired products 2e-2h were obtained in good to 
excellent yields (69−97%). The p-tolyl benzonitrile also underwent 
to the same conditions and provided the desired amide product 2i in 
71% yield. Further, in the presence of meta substituted benzonitrles 
like -OMe, -Me (2j-2k) in this case also reaction underwent smoothly 
and affords to excellent yields.  For halogen substituted either at meta 
or ortho position of benzonitriles gave the corresponding amides 2l-p 
in good to moderate yields (61-73%). And 2-methoxy benzonitrile 
subjected under standard conditions to affords corresponding amide 
2q is 89%. The hydration of α-cyano naphthalene under the present 
conditions afford the naphthylamide 2r in 69% yield.  To validate the 
present protocol, the product 2a was obtained at gram scale in 92% 
yield using 10.0 mmol (1.03 g) of 1a.

We then evaluated the hydration of heteroaromatic and aliphatic 
nitriles under the above optimized conditions (Table 3). Particularly, 
the heteroaromatic amides are the key intermediates in the preparation 
of 2-pyridyl urea derivatives which are potent inhibitors of gastric acid 
secretion.[11] Such amides have been prepared through oxidative coupling 
of corresponding aldehydes and terminal alkynes using Cu(OTf)2/
I2system.[12] Notably, heteroaromatic amides such as thiophene-
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Table 1. Optimization of reaction conditionsa

aReaction Conditions: amide (2 mmol), base (2 mmol) and solvent (1.0 mL), isolated 
yields.
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Table 2. Substrates scope of the benzonitrilesa

aReaction Conditions: Nitrile (2 mmol), NaOH (2 mmol) and IPA (1.0 mL), 60 ºC, 24h, 
isolated yields.
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Table 3. Substrates scope of the hetero and aliphatic nitrilesa

aReaction Conditions: Nitrile (2 mmol), NaOH (2 mmol) and IPA   (1.0 mL), 60º C, 24h, 
isolated yields
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(Eluent: 40% EtOAc/hexane); 86% yield (232.2 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 7.72 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 
2H), 6.10 (br, NH, 2H).13C NMR (125 MHz, CDCl3) δ 169.5, 142.5, 
130.5, 129.2, 127.3, 21.4.

4-Methoxybenzamide (2c)

O

NH2

MeO
(Eluent: 30% EtOAc/hexane); 92% yield (278 mg); white solid; 1H 

NMR (600 MHz, CDCl3): δ 7.79 (d, J = 7.0 Hz, 2H), 6.94 (d, J = 7.5 Hz, 
2H), 5.99 (br, NH, 2H), 3.86 (S, 3H).13C NMR (150 MHz, DMSO-d6) δ 
167.9, 162.0, 129.8, 127.0, 113.8, 55.8. 

3-methoxybenzamide (2d)

NH2

O

O

(Eluent: 35% EtOAc/hexane); 89% yield (270.1 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.40 (s, 1H), 7.35 (m, 2H), 7.08 (d, J = 7.5 
Hz, 1H), 6.10 (br, NH, 2H), 3.85 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 
169.2, 159.9, 134.8, 129.7, 119.2, 118.3, 112.6, 55.5.

3-Methylbenzamide (2e)

NH2

O

Me
(Eluent: 40% EtOAc/hexane); 82% yield (221.5 mg); white solid; 1H 

NMR (600 MHz, CDCl3): δ 7.65 (s, 1H), 7.59 (d, J = 5.5 Hz, 1H), 7.30 
(t, J = 6.0 Hz, 2H), 6.49 (br, NH, 2H), 2.37 (s, 3H). 13C NMR (150 MHz, 
CDCl3) δ 170.1, 138.4, 133.4, 132.6, 128.4, 128.1, 124.3, 21.3.

2-methoxybenzamide (2f)

NH2

O

O

In conclusion, we have developed an efficient protocol for the 
hydration of various benzonitriles to corresponding benzamides 
using inexpensive and commercially available base (NaOH) under 
very mild conditions (60°C).The conditions also applicable to 
heteroaromatic nitriles and aliphatic nitriles and afford the good 
to excellent yields. The present method represents a significant 
development for the hydration of nitriles under transition metal-
free conditions.

Experimental Section

General information

All commercially available chemicals and reagents were used 
without anyfurther purification unless otherwise indicated. 1H and 13C 
NMR spectra were recorded at 500, 600 and 125, 150 MHz,respectively. 
The spectra were recorded in CDCl3andDMSO-d6as a solvent. 
Multiplicity was indicated asfollows: s (singlet); d (doublet); t (triplet); 
m (multiplet); dd (doublet of doublets), etc. Couplingconstants (J) 
were given in Hz. Chemical shifts are reported in δ relative to TMS 
as an internalstandard. The peaks around δ values of 7.26 (1H NMR), 
77.0 (13C NMR) correspond to CDCl3.The peaks around δ values of 
2.50 (1H NMR), 39.9 (13C NMR) are corresponding to DMSO. The 
peak around δ values of 3.35 (1H NMR) is corresponding to the H2O 
present in DMSO solvent. Progress of the reactions was monitored by 
thin layer chromatography (TLC). Silica gel 100-200mesh size was used 
for column chromatography using a hexane/ethyl acetate eluent unless 
otherwise indicated.

General experimental procedure for the synthesis of 
benzamide from benzonitrile (3a)

A 20 mL round bottomed flask was charged with benzonitrile (2 
mmol), sodium hydroxide (2 mmol) dissolved in isopropyl alcohol (1.0 
mL). Then the reaction mixture was placed at indicated temperature 
and time, and the progress of the reaction was monitored by TLC. 
After completion of the reaction, the crude mixture was dissolved with 
dichloromethane and filtered the mixture and evaporated to dryness. 
The residue was then purified by column chromatography (hexane/
EtOAc) to get the pure product. All amide products were characterized 
by NMR.

Characterization data

Benzamide (2a)

O

NH2

(Eluent: 40% EtOAc/hexane); 93% yield (225.1 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 7.82 (s, 1H), 7.81 (d, J = 2.0 Hz, 1H), 7.53 
(t, J = 6.5 Hz, 1H), 7.44 (t, J = 7.0 Hz, 2H), 6.17 (br, NH, 2H).13C NMR 
(125 MHz,CDCl3) δ 169.5, 133.3, 131.9, 128.5, 127.3.
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Scheme 2. A proposed mechanism for hydration of nitriles
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(Eluent: 30% EtOAc/hexane); 84% yield (255.1 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.22 (dd, J = 5.0 Hz, 1H), 7.49 (m, 1H), 7.08 
(t, J = 6.0 Hz, 1H), 7.00 (d, J = 6.5 Hz, 1H), 6.06 (br, NH, 2H), 3.97 (s, 
3H). 13C NMR (150 MHz, CDCl3) δ 167.1, 157.8, 133.4, 132.6, 121.3, 
120.8, 111.4, 56.0.

4’-Methyl-[1, 1’-biphenyl]-4-carboxamide (2g)

NH2

O

(Eluent: 40% EtOAc/hexane); 71% yield (301.6 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.86 (d, J = 7.0 Hz, 2H), 7.64 (d, J = 7.0 Hz, 
2H), 7.50 (d, J = 6.5 Hz, 2H), 7.26 (d, J = 6.5 Hz, 2H), 6.08 (br, NH, 
2H), 2.39 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 168.0, 143.1, 137.9, 
136.8, 133.3, 130.1, 128.6, 127.2, 126.6, 21.2.

4-Fluorobenzamide (2h)
O

NH2

F

(Eluent: 40% EtOAc/hexane); 69% yield (193.1 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 7.83 (m, 2H), 7.12 (t, J = 9.0 Hz, 2H), 6.06 
(br, NH, 2H).13C NMR (125 MHz, CDCl3) δ 168.3, 166.0, (d, J = 251.2 
Hz), 164.0, 129.8 (d, J = 8.75 Hz), 129.7, 115.8 (d, J = 0.17 Hz), 115.6.

3-Fluorobenzamide (2i)

NH2

O

F

 

(Eluent: 40% EtOAc/hexane); 61% yield (170.7 mg); white solid; 
1H NMR (600 MHz, CDCl3): δ 7.56 (t, J = 6.5 Hz, 1H), 7.43 (q, J = 
6.5 Hz, 1H), 7.23 (t, J = 7.0 Hz, 1H), 6.12 (br, NH, 2H).13C NMR (150 
MHz,CDCl3) δ 168.1, 163.6 (d, J = 246 Hz), 162.0, 135.7, 130.4 (d, J = 
7.5 Hz), 130.3, 122.89 (d, J = 3.0 Hz), 122.87, 119.2, 119.0, 114.9, 114.7.   

4-Bromobenzamide (2j)

NH2

O

Br

(Eluent: 40% EtOAc/hexane); 90% yield (358.0 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.68 (d, J = 7.0 Hz, 2H), 7.60 (d, J = 7.5 Hz, 
2H), 6.05 (br, NH, 2H).13C NMR (150 MHz, CDCl3) δ 168.2, 132.1, 
131.9, 128.9, 126.8.

3-Bromobenzamide (2k)

NH2

O

Br

 

(Eluent: 35% EtOAc/hexane); 68% yield (271.3 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.97 (s, 1H), 7.72 (d, J = 6.5 Hz, 1H), 7.67 
(d, J = 7.0 Hz, 1H), 7.33 (t, J = 6.0 Hz,1H), 6.11 (br, NH, 2H).13C NMR 
(150 MHz,CDCl3) δ 167.8, 135.2, 135.0, 130.6, 130.2, 125.8, 122.8.

2-Bromobenzamide (2l)

NH2

O

Cl
(Eluent: 30% EtOAc/hexane); 70% yield (278.3 mg); white solid; 1H 

NMR (600 MHz, CDCl3): δ 7.64 (m, 1H), 7.62 (d, J = 6.5 Hz, 1H), 7.38 
(t, J = 6.0 Hz, 1H), 7.30 (m, 1H), 6.11 (br, NH, 2H). 13C NMR (150 MHz, 
CDCl3) δ 169.1, 136.5, 131.7, 129.9, 127.6, 119.2.

4-Chlorobenzamide (2m)

NH2

O

Cl

(Eluent: 40% EtOAc/hexane); 97% yield (300.2 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.75 (d, J = 7.0 Hz, 2H), 7.41 (t, J = 6.5 Hz, 
2H), 5.82 (br, NH, 2H).13C NMR (150 MHz, CDCl3) δ 168.2, 138.4, 
131.6, 129.0, 128.8.

2-Chlorobenzamide (2n)

NH2

O

Cl
(Eluent: 30% EtOAc/hexane); 73% yield (225.8 mg); white solid; 1H 

NMR (600 MHz, CDCl3): δ 7.79 (d, J = 7.0 Hz, 1H), 7.42 (d, J = 6.5 
Hz, 1H), 7.39 (d, J = 5.5 Hz, 1H), 7.35 (t, J = 7.0 Hz, 1H), 6.37 (br, NH, 
2H). 13C NMR (150 MHz, CDCl3) δ 168.0, 133.7, 131.9, 130.88, 130.81, 
130.4, 127.2.

3-Chlorobenzamide (2o)

NH2

O

Cl

 

(Eluent: 40% EtOAc/hexane); 70% yield (218.2 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 7.80 (s, 1H), 7.67 (d, J = 6.5 Hz, 1H), 7.50 
(d, J = 7.0 Hz, 1H), 7.38 (t, J = 6.0 Hz, 1H), 6.09 (br, NH, 2H).13C NMR 
(125 MHz,CDCl3) δ 167.9, 135.0, 134.8, 132.0, 129.9, 127.7, 125.3.

4-Iodobenzamide (2p)

NH2

O

I
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(Eluent: 40% EtOAc/hexane); 95% yield (469.6 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.82 (d, J = 7.5 Hz, 2H), 7.54 (d, J = 7.5 Hz, 
2H), 6.02 (br, NH, 2H).13C NMR (150 MHz, DMSO-d6) δ 167.7, 137.6, 
132.0, 129.9, 118.5, 99.4.

[1, 1’-Biphenyl]-4-carboxamide (2q)

O

NH2

Ph
(Eluent: 40% EtOAc/hexane); 77% yield (304.9 mg); white solid; 1H 

NMR (600 MHz, CDCl3): δ 7.90 (d, J = 7.0 Hz, 2H), 7.67 (d, J = 7.0 Hz, 
2H), 7.61 (d, J = 6.5 Hz, 2H), 7.47 (t, J = 6.5 Hz, 2H), 7.40 (t, J = 6.0 Hz, 
1H), 6.11 (br, NH, 2H).13C NMR (150 MHz, DMSO-d6) δ 168.0, 143.2, 
139.7, 133.6, 129.5, 128.6, 128.5, 127.4, 126.9.

1-Naphthamide (2r)
NH2O

(Eluent: 40% EtOAc/hexane); 69% yield (235.9 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 8.44 (d, J = 7.0 Hz, 1H), 7.95 (d, J = 6.5 Hz, 
1H), 7.72 (d, J = 6.5 Hz, 1H),  7.59 (t, J = 7.0 Hz, 1H), 7.47 (t, J = 6.5 
Hz, 1H), 6.12 (br, NH, 2H).13C NMR (125 MHz, CDCl3) δ 171.5, 133.7, 
133.0, 131.2, 130.0, 128.3, 127.3, 126.5, 125.4, 124.6.

Thiophene-2-carboxamide (3a)

S

NH2

O

(Eluent: 30% EtOAc/hexane); 89% yield (226.8 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.54 (t, J = 5.0 Hz, 2H), 7.10 (t, J = 3.5 Hz, 
1H), 5.80 (br, NH, 2H).13C NMR (150 MHz, CDCl3) δ 163.3, 137.6, 
131.0, 129.3, 127.8.

Thiophene-3-carboxamide (3b)

S

O
NH2

(Eluent: 30% EtOAc/hexane); 87% yield (221.0 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 7.91 (s, 1H), 7.40 (d, J = 4.0 Hz, 1H), 7.36(t, 
J = 4.0 Hz, 1H), 5.84 (br, NH, 2H).13C NMR (150 MHz, CDCl3) δ 164.5, 
136.4, 129.3, 126.7, 126.3.

Picolinamide (3c)

N

NH2

O

(Eluent: 45% EtOAc/hexane); 60% yield (146.3 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 8.58 (d, J = 4.5 Hz, 1H), 8.20 (d, J = 7.5 Hz, 
1H), 7.86 (m, 1H), 7.45 (m, 1H), 6.10 (br, NH, 2H).13C NMR (125 MHz, 
CDCl3) δ 166.9, 149.5, 148.3, 137.2, 126.4, 122.4.

Nicotinamide (3d)

N

NH2

O

(Eluent: 45% EtOAc/hexane); 51% yield (124.2 mg); white 
solid; 1H NMR (600 MHz, CDCl3): δ 9.03 (s, 1H), 8.76 (d, J = 3.5 
Hz, 1H), 8.17 (d, J = 6.5 Hz, 1H), 7.42 (t, J = 4.5 Hz, 1H), 6.28 (br, 
NH, 2H).13C NMR (150 MHz, CDCl3) δ 167.3, 152.7, 148.2, 135.5, 
129.1, 123.6.

Isonicotinamide (3e)

N

O NH2

(Eluent: 45% EtOAc/hexane); 65% yield (158.4 mg); white solid; 1H 
NMR (600 MHz, CDCl3): δ 8.78 (d, J = 4.5 Hz, 2H), 7.65 (q, J = 2.5 Hz, 
2H), 6.18 (br, NH, 2H).13C NMR (150 MHz, CDCl3) δ 167.1, 150.7, 
140.4, 121.0.

Pyrazine-2-carboxamide (3f)

N

N
NH2

O

(Eluent: 50% EtOAc/hexane); 68% yield (167.3 mg); white solid; 1H 
NMR (500 MHz, CDCl3): δ 9.43 (s, 1H), 8.78 (d, J = 2.5 Hz, 1H), 8.56 
(d, J = 1.5 Hz, 1H), 5.98 (br, NH, 2H).13C NMR (125 MHz, CDCl3) δ 
165.3, 147.5, 144.6, 144.1, 142.7.

4-(Imidazo [1, 2-a] pyridin-2-yl) benzamide (3g)

N

N

O

NH2

(Eluent: 70% EtOAc/hexane); 57% yield (270.1 mg); white solid; 1H 
NMR (600 MHz, DMSO-d6): δ 8.56 (d, J = 4.5 Hz, 1H), 8.52 (s, 1H), 
8.04 (t, J = 5.5 Hz, 3H), 7.97 (d, J = 5.5 Hz, 2H), 7.63 (d, J = 7.0 Hz, 1H), 
7.38 (s, 1H), 7.31 (t, J = 5.0 Hz, 1H), 6.95 (s, 1H).13C NMR (150 MHz, 
CDCl3) δ 168.1, 145.2, 143.5, 136.7, 133.8, 128.5, 127.6, 126.2, 125.7, 
117.0, 113.2, 110.7.

Acetamide (3h)

NH2

O

H3C
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(Eluent: 40% EtOAc/hexane); 58% yield (68.9 mg); white solid; 1H 
NMR (600 MHz, CDCl3): 5.82 (br, NH, 2H), 1.98 (s, 3H). 13C NMR (125 
MHz, CDCl3) δ 172.9, 22.7.

Pentanamide (3i)

NH2

O
(Eluent: 40% EtOAc/hexane); 59% yield (119.4 mg); white solid; 1H 

NMR (600 MHz, DMSO- d6): δ 7.23 (br, NH, 2H) 2.02 (t, J = 6.5 Hz, 
2H), 1.45 (t, J = 6.0 Hz, 2H), 1.26 (q, J = 6.0 Hz), 0.86 (t, J = 5.5 Hz, 3H). 
13C NMR (150 MHz, DMSO- d6) δ 174.9, 27.7, 22.3, 14.2.
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