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Abstract
Electrolyte and renal abnormalities are an important but uncommon and under-appreciated secondary cause of cardiomyopathy (CM). Knowledge of these CMs is 
clinically relevant because they are potentially reversible following early diagnosis and prompt institution of appropriate treatment. However, electrolyte imbalance 
CMs has a paucity of research-based evidence to develop specific diagnostic and therapeutic guidelines while the few available clinical trials discuss the disease in the 
wider context of dilated cardiomyopathy. The evidence on the natural history, diagnosis and treatment of renal abnormalities (uraemic) CM are based on evidence 
from studies on CKD or ERSD patients yet these findings might not entirely apply to uraemic CM, which is one of the leading causes of mortality in CKD or ERSD 
patients. Furthermore, due to heterogeneous clinical presentation and non-pathognomonic features, diagnosis is often delayed, which is associated with an ominous 
prognosis. Knowledge of the natural history of electrolyte/renal abnormalities CMs is important to improve early diagnosis and the efficacy of treatment. Thus, this 
systematic review and meta-analysis aggregates published evidence on electrolyte imbalance and uraemic CMs to understand better their pathogenesis, manifestation, 
diagnosis and clinical management.
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Introduction
Electrolyte imbalance and renal abnormalities (in patients with 

chronic kidney disease [CKD] or end stage renal disease [ERSD]) are 
uncommon and under-appreciated secondary causes of cardiomyopathy 
(CM) – a heart muscle disease. The relationship between electrolyte 
imbalance and heart (HF) is long-established. Electrolyte imbalance 
is a frequent and potentially hazardous complication in heart failure 
(HF) patients. It arise due to pathophysiological alterations in the HF 
state leading to neurohormonal activation (stimulation of the renin-
angiotensin-aldosterone system [RAAS] and sympathoadrenergic 
stimulation) and due to complications of standardized HF therapy 
– diuretics, cardiac glycoside or angiotensin converting enzymes – 
inhibitors (ACE-I) [1-3]. Increased knowledge of electrolyte imbalance 
in HF has contributed to increased therapeutic efficacy in HF patients 
but has also engendered new problems and complications related to a 
more vigorous therapy to warrant physicians treating HF patients to be 
cognizant of these advantages and dangers [1]. 

More recently, electrolyte imbalance have been implicated as an 
aetiology of CM, which if not treated might progress into HF. Indeed, 
the recent position and scientific statements by the European Society 
of Cardiology (ESC) [4,5] and the American Heart Association (AHA) 
[6,7] list electrolyte imbalance (calcium and phosphate) as one of the 
causes of secondary (non-genetic) CMs. However, published evidence 
from clinical trials on this type of CM are sporadic and a greater 
proportion of literature comes from case reports, whose evidence 
is less reliable relative to those based on clinical trials. The lack of 
data undermines a holistic understanding of the role of electrolyte 
imbalance in the pathogenesis of CM yet a good understanding of this 
CM is clinically essential because the disease is potentially reversible 
with appropriate therapy. On the other hand, cardiovascular (CV) 

complications especially uraemic CM is a leading cause of mortality 
in CKD or ESRD patients. Early diagnosis remains a clinical challenge 
since it presents without signs and symptom of HF with preserved 
systolic function. Further, clinical management of HF in uraemic 
patients remains unclear since current guidelines may not apply 
to patients with severe renal function. Thus, this paper performs a 
systematic review and meta-analysis of published evidence on CMs in 
the setting of electrolyte imbalance and renal abnormalities to improve 
the understanding on their prevalence, pathophysiology, clinical 
presentation, diagnosis and management. 

Electrolyte imbalance cardiomyopathy
Electrolyte is an umbrella term for electrically charged minerals 

and compounds occurring in blood urine, tissues, muscles and other 
body fluids, and are involved in many essential processes in the human 
body. Common electrolytes found in the human body include sodium, 
potassium, chloride, calcium, magnesium, phosphate and bicarbonate. 
Electrolyte balance is a key factor in maintaining homeostasis in the 
body as well as playing important roles in protecting cellular function, 
tissue perfusion, energy production, muscle contraction and acid-base 
balance [8]. Electrolyte imbalance is a common finding in many diseases 
[9,10]. The most important and prevailing electrolyte imbalances 
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hormones: parathyroid hormone (PTH), vitamin D, and calcitonin 
via their specific effects on the bowel, kidneys and skeleton [15]. PTH 
stimulates calcium absorption in the kidney and calcium release from 
bone as well as stimulates renal production of 1,25-dihydroxyvitamin 
D (calcitriol) from 25-hydroxyvitamin D. 1,25-dihydroxyvitamin D is 
the most active form of vitamin D and it acts on the gastrointestinal 
tract to increase calcium absorption. Humans obtain Vitamin D mainly 
through synthesis in the skin and diet. Skin synthesis requires exposure 
to ultraviolet light [15]. Thus, common causes of hypocalcaemia are 
thus vitamin D deficiency and hypoparathyroidism. Less common 
causes include resistance to PTH, vitamin D resistance, autosomal 
dominant hypocalcaemia, hypomagnesaemia and sclerotic metastases 
[16]. Other rare causes include hungry bone syndrome following 
parathyroidectomy for hyperparathyroidism, infusion of phosphate or 
calcium chelators such as citrate with massive blood transfusion, critical 
illness and after intravenous treatment with bisphosphates, particularly 
high-dose treatment in vitamin D deficient patients [15,16].

Vitamin D deficiency is a leading cause of hypocalcaemic CM. The 
presence of 1,25-dihydroxyvitamin D enhances intestinal absorption of 
calcium and phosphorus as well as promotes bone remodelling [15]. 
Vitamin D inadequacy (25-hydroxyvitamin D) concentration less than 
75nmol/L is common in adults and children, which leads to reduced 
gastrointestinal calcium absorption of up to 50%, resulting in only 15% 
of dietary intestinal calcium absorbed [19]. Hypocalcaemia associated 
with vitamin D deficiency can occur in individuals whose exposure to 
ultraviolet light is low, particularly those with a diet low or missing in 
vitamin D. It may also occur during pregnancy and puerperium when 
Vitamin D requirements increase leading to low maternal vitamin D 
levels and as a result may cause hypocalcaemia in breastfed children 
[20]. Hypocalcaemia due to vitamin D deficiency manifests in some 
patients on antiepileptic medication that induce enzymes increasing 
vitamin D metabolism. The prevalence of vitamin D deficiency in 
institutionalized children with poor control of epilepsy is 75% [21]. 
Poor nutrition and minimal exposure to the sun possibly contributes 
to osteomalacia. Patients with small intestine disease such as coeliac 
disease that reduces dietary calcium and vitamin D absorption, may 
also exhibit hypocalcaemia. Less often, hypocalcaemia may manifest 
in individuals with profoundly low dietary intake of calcium but with 
vitamin D concentrations within the normal range [22].

PTH is another leading cause of hypocalcaemic CM. Hypocalcaemia 
occurs in patients with impaired function of the parathyroid glands, 
which is very common following thyroid or parathyroid surgery 
although it can also be idiopathic as seen mostly in young adults and 
less often as part of a genetic syndrome such autoimmune polyglandular 
syndrome type 1 [23]. Hypoparathyroidism is most common following 
inadvertent removal of or damage to the parathyroid glands or their 
vascular supply during total thyroidectomy in about 0.5% to 6% of total 
thyroidectomies [15]. Decreased levels of PTH results in excessive renal 
calcium loss and reduced intestinal absorption of calcium secondary 
to decreased production of 1,25- dihydroxyvitamin D. Sometimes, 
tissue resistance to PTH can produce biochemical pattern mimicking 
hypoparathyroidism, even though levels of the hormone are high. 
Such pseudo-hypoparathyroidism is due to the failure of PTH to 
activate its signalling pathway [24]. Pseudo-hypoparathyroidism is 
a genetically heterogeneous condition in which some patients may 
present with skeletal abnormalities such as Albright’s hereditary 
osteodystrophy, which can occur in other family members independent 
of any abnormality of serum calcium. Genetic mutations involving the 
development of parathyroid glands and synthesis or secretion of PTH 
can also lead to hypoparathyroidism. Genetic mutations can also lead 

include hypo- and hyper-states of sodium, potassium, calcium and 
magnesium (Table 1).

The kidney is the principally responsible organ for the retention 
and excretion of electrolytes in healthy individuals [11] although other 
mechanisms like hormonal interactions of antidiuretic hormone, 
aldosterone, and parathyroid hormone and other factors such as 
physiological stress also play important roles in regulating electrolyte 
balance [8]. Electrolyte imbalance are frequent in the elderly and 
critically ill patients and often occur in the progression of diseases such 
as diabetes mellitus, acute or chronic renal failure, severe cardiovascular 
(CV) events [12-14]. In children, electrolyte imbalance are common due 
to their small size, large ratio of surface area to volume and immature 
homeostatic mechanisms [8]. 

Electrolyte imbalance CM is an acquired (secondary) form of CM 
characterized by poor myocardial contractility and a dilated heart in 
the absence of known causes such as cardiac ischemia, hypertension, 
rheumatic heart diseases and congenital abnormalities as well as 
reversible causes such as alcohol, toxins, infection and metabolic 
abnormalities. Electrolyte imbalance may lead to many different 
diseases but those frequently associated with CM are hypo-states of 
calcium (hypocalcaemia) and phosphorous (hypophosphatemia) [4-7].

Hypocalcaemic cardiomyopathy
Overview

Hypocalcaemia is an electrolyte imbalance commonly encountered 
on routine clinical practice defined as defined as serum calcium levels 
less than 8.2 mg/dl. The condition may be transient, reversing with 
addressing the underlying cause expeditiously or chronic or even 
lifelong, when it is secondary to a genetic disorder or the result of 
irreversible post-surgical injury to the parathyroid gland or secondary 
to autoimmune destruction [14,15]. Hypocalcaemia is well known 
but a rare cause of DCM and should be considered in every patients 
with DCM because calcium supplementation reverses the disease [15]. 
The true prevalence of hypocalcemic CM remains unknown although 
epidemiological data of hypocalcaemia may provide a valuable insight 
into its prevalence. In the 1960s, hypocalcaemia had a prevalence of 18% 
in all hospitalized patients in primary and secondary care, and up to 
85% in the intensive care unit [16]. In a more recent retrospective study 
based on laboratory results of 12,334 hospitalized patients performed 
between 2011 and 2014, hypocalcaemia accounted for 27.72% with 
a slight majority being male (57.07%). The highest prevalence was in 
patients older than 65 years (61.31%). There was a tendency towards 
decreasing incidence of hypocalcaemia from 35.42% in 2011 to 21.93 in 
2014 [17]. In a five-year retrospective review of medical records of 3,989 
patients between 2010 and 2015 in a Nigerian hospital, the prevalence 
of hypocalcaemia in pregnancy and puerperium (based on carpopedal 
spasms) was 1.3% [18].

Aetiology

The human body regulates serum calcium balance within the 
narrow range of 2.1 to 2.6 mmol/L by three main calcium-regulating 

Electrolyte Normal Ranges Disease in the case of Imbalance
Sodium Na+ 135-145 Hyponatremia, Hypernatremia
Chloride Cl- 96-106 Hypochloremia, Hyperchloremia

Potassium K+ 3.5-5.5 Hypokalaemia, hyperkalaemia
Magnesium Mg+2 1.7-2.2 Hypomagnesia, hypermagnesia

Calcium Ca+2 8.5-10.2 Hypocalcaemia, hypercalcaemia 
Phosphorous PO4- 2.5-4.5 Hypophosphatemia, hyperphosphatemia

Table 1. Common electrolytes, normal ranges and diseases
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to resistance to PTH at the proximal renal tubule, resulting in excessive 
renal calcium excretion and hypocalcaemia [15]. Severe hypocalcaemia 
can occur in patients with pre-existing vitamin D deficiency who 
receive intravenous bisphosphates because these compounds block 
bone resorption [25].

In addition to vitamin D deficiency and PTH, other causes are 
congenital abnormalities. Abnormalities in the embryonic development 
of the parathyroid glands may lead to DiGeorge syndrome associated 
with cardiac defects, abnormal facies, thymic hypoplasia, cleft palate 
and hypocalcaemia. Other genetic abnormalities capable of causing 
hypoparathyroidism or pseudo-parathyroidism [15]. Uncommon 
causes of hypoparathyroidism include heavy metal infiltration of 
the parathyroid glands with iron as seen in haemochromatosis or 
thalassemia. Copper deposition as seen in Wilson disease is also an 
uncommon cause, as it is metastatic infiltration of the parathyroid 
glands. Magnesium deficiency or excess can cause an impairment of 
PTH secretion and result in hypoparathyroidism [26].

Pathophysiology

Although the physiological role of serum calcium in the excitation 
and contraction of cardiac muscle fibres is well established but 
pathophysiology of hypocalcaemic CM remains unclear. During 
membrane depolarization, influx of calcium into the cardiomyocytes 
via voltage-gated L-type calcium channels raising the levels of cytosolic 
calcium available to bind troponin C [27-29]. This triggers the release 
of calcium from sarcoplasmic reticulum and subsequent binding of 
calcium ions to troponin-tropomyosin complex to form cross-bridges 
between actin and myosin filament resulting in muscle contraction 
[28,30,31]. Experimental animal models reveal reduced cardiac 
contractility in hypocalcaemia [32]. 

More recent evidence suggests that vitamin D and PTH may play 
an independent role in the pathogenesis of hypocalcaemic CM. There 
is increasing recognition of autocrine functions of vitamin D in several 
organs including cardiomyocytes. In experimental animal model, 
the ablation of vitamin D receptor in mice and vitamin D deficiency 
results in cardiac hypertrophy and fibrosis, which persists even after 
normalization of calcium levels with high-calcium and high-phosphate 
diet, suggesting vitamin D has an independent role in the causation of 
cardiac manifestations [33]. In other experimental models, vitamin D 
deficit in mothers resulted in delayed maturation and abnormal growth 
of cardiomyocytes in the offspring despite unchanged serum calcium 
concentration [34]. Epidemiological studies also report an association 
between deficits in vitamin D and HF. A community-based study 
enrolling elderly patients associated higher circulating vitamin D levels 
with better systolic function at baseline even after adjustment of CV 
risk factors and calcium, phosphate and PTH concentrations [35]. A 
related study of patients undergoing coronary angiography associated 
low levels of circulating vitamin D with depressed ejection fraction 
and increased CV mortality [36]. PTH plays an important role in the 
regulation of normal cardiac contractile function. PTH acts on voltage-
gated calcium channel to exert a positive chronotropic effect in neonatal 
cardiomyocytes as well as stimulates the synthesis of intracellular 
proteins via stimulation of protein kinase C [37]. Case reports have also 
associated isolated hypoparathyroidism with significant reversal of LV 
systolic function [38,39].

Although pathogenic associations between myocardial 
contractility and calcium homeostasis have been generalised, 
neonates and adults show different mechanisms and hypocalcaemic 
cardiac manifestations. Vitamin D deficiency is common and a cause 

of hypocalcaemic CM in neonates [40-46]. Maternal deficits in vitamin 
D is the usual cause of vitamin D deficiency in neonates indicated by 
96% of vitamin D deficient pregnant women positively correlating 
with low vitamin D levels in their infants [47]. On the other hand, 
in adults, vitamin D deficiency may be prevalent but significant LV 
systolic dysfunction with HF is uncommon with only 27 adult cases 
reported in literature [31] suggesting adult hypocalcaemic CM is not a 
manifestation of vitamin D deficiency in adults. In paediatric patients 
with hypocalcaemic CM, vitamin D deficiency is severe and associated 
with secondary hyperparathyroidism or due to relatively immature 
PTH response to hypocalcaemia or very high levels of PTH [45]. On the 
other hand, adult patients with hypocalcaemic CM hypoparathyroidism 
is common and usually the dominant metabolic abnormality and the 
presence of vitamin D deficiency may aggravate hypocalcaemia and 
LV systolic function [31]. However, there is no evidence that vitamin 
D supplementation may improve cardiac function in patients with 
hypocalcaemic CM although recent data suggests a tendency towards 
potential benefits [48,49]. The difference in age-related maturation of 
calcium handling mechanisms may explain differential effect of vitamin 
D deficits on serum calcium concertation and LV systolic function in 
neonates and in adults [31].

Clinical presentation

Clinical presentation of hypocalcaemic CM is not well described 
with current evidence derived from case reports, which reveal 
inconsistent findings suggesting that signs and symptoms are non-
specific. Common signs and symptoms reported in case reports include 
complaints of weakness, progressive dyspnoea, sudden onset of chest 
heaviness and palpitations associated with tingling sensation in hand 
and arm for one month [31]. It is essential to ask about family history 
to identify a genetic cause or previous thyroidectomy. Patients who had 
undergone thyroidectomy may present with worsening breathlessness 
and orthopnoea [28]. In adults, worsening exertional dyspnoea 
associated with orthopnoea, but in the absence of paroxysmal nocturnal 
dyspnoea, chest pain, palpitations, syncope, cough, expectoration or 
febrile illness may suggest the need for tests for hypocalcaemia [27]. 
In elderly hypocalcemic CM patients, examination may reveal cardiac 
and non-cardiac signs and symptoms including mental confusion, 
psychomotor slowing, depressed facial expression, limb tremor, muscle 
spasms and crackling rales on lower half of both lungs [27]. Due to 
non-specific signs and symptoms, hypocalcaemic CM can easily be 
overlooked because the clinical symptoms of hypocalcaemia such 
as fatigue and muscle weakness are often regarded as subjective and 
ambiguous in the absence of tetany (a condition marked by intermittent 
muscular spasms due to malfunction of the parathyroid glands and a 
consequent of calcium deficiency) [29].

Clinical evaluation

Clinical evaluation for hypocalcaemic CM is a combination 
of laboratory investigations and non-invasive cardiac imaging. 
Initial diagnostic laboratory investigations include measurement 
for serum calcium, serum phosphorus, serum magnesium, serum 
25-hydroxyvitamin D levels and serum PTH level. Hypocalcaemic 
patients will have low serum calcium corrected for albumin), low or 
inappropriately normal PTH levels, hyperphosphatemia, hypercalciuria 
and low 1,25-dihydrocyvitamin D levels [15]. ECG may reveal sinus 
tachycardia, T-wave inversion with a slightly increased corrected 
QT interval [28,30]. Chest radiography may demonstrate cardiac 
enlargement with pulmonary congestion and pleural effusion [28]. 
M-mode and 2D echocardiography reveal normal or enlarged chambers 
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and severe generalized hypokinesia of LV with severely depressed 
ejected fraction with no evidence of wall abnormalities, transmitral 
flow with a restrictive physiology and preserved RV systolic function 
[28]. Troponin I may be elevated but BNP is within normal levels [30]. 
Cardiac MRI may be performed to clarify the clinical picture with 
morphological or functional alterations or contrast uptake in delayed 
enhancement sequences but its use is not well-defined [30].

Clinical management

Clinical management of hypocalcaemic CM targets treating the 
underlying condition and the management of signs and symptoms of HF. 
Calcium supplementation is the mainstay therapy for hypocalcaemic 
CM and is associated with improvement in cardiac structure and 
function [28,30,31]. If intravenous infusions are contemplated, 
hospitalization in an intensive care unit or specialized unit with access 
to cardiac monitoring and rapid ionized calcium determinations is 
ideal for optimal management and safety. Cardiac monitoring usually 
with ECG is recommended since dysrhythmias may occur if correction 
is too rapid [15,50]. Calcium gluconate is the preferred form of 
intravenous calcium because calcium chloride is more likely to cause 
local irritation. Treatment can be repeated until symptoms have cleared 
but this may only offer a temporary relief and thus continuous infusion 
of a dilute solution of calcium may be necessary to prevent recurrence 
of hypocalcaemia [16]. In patients on digoxin, calcium administration 
should be cautious with careful ECG monitoring because of 
increased sensitivity to fluctuations in serum calcium. Patients with 
hypocalcaemia associated with hypomagnesaemia may require 
magnesium supplementation therapy [16]. In patients with persistent 
(chronic) hypocalcaemia, supplementary treatment usually depends 
on the underlying hypocalcaemic cause [15]. Patients with vitamin D 
deficiency may require lower doses of oral vitamin D supplementation 
therapy either ergocalciferol (vitamin D2) or cholecalciferol 
(vitamin D3) [50]. However, patients with hypocalcaemic CM due 
to hypoparathyroidism may require higher and increasing doses of 
vitamin D (either calcitriol or alfacalcidol) because PTH is needed 
for the conversion of vitamin D to 1,25-dihydroxyvitamin D [51,52]. 
Patients with signs and symptoms of HF may receive standard HF 
therapy as per the current guidelines [30,31]. 

Hypophosphatemic cardiomyopathy
Overview

Phosphorous occurs throughout the body in skeleton, skeletal 
muscles and soft tissues and plays essential roles in cell structure (cell 
membrane and nucleic acids), cellular metabolism (generation of ATP), 
regulation of subcellular processes (phosphorylation od key enzymes) 
and the maintenance of acid-base homeostasis (urinary buffering) 
[53,54]. Phosphorous also forms the main structural element of 
membranes and bones. Intracellularly, phosphorous exist in the form 
of creatine phosphate, adenosine monophosphates and tripShosphates 
within bones and teeth (85%), soft tissues (14%) and extracellular fluids 
(1%) [55]. Normal serum concentration of phosphate is 1.7 to 4.5 mg/
dL in adults and 4.0 to 7.0 mg/dL in children. In most laboratories 
reports, 10% of the inorganic orthophosphate form is bound to protein, 
5% occurs in complex form with calcium and magnesium and 85% in 
the form of H2PO4- and HPO4-. [55]. The body maintains phosphate 
homeostasis through a balance of oral intake, gut absorption, kidney 
excretion and intracellular shifts. In clinical setting, low serum 
phosphorus levels are common with refeeding syndrome, continuous 
insulin treatment for diabetic ketoacidosis, sepsis, alcoholism, secondary 
hyperparathyroidism and tum-r-related osteomalacia. Congenital 

causes include X-linked hypophosphatemia and autosomal dominant 
hypophosphatemic rickets [54,55]. Severe Hypophosphatemic is 
defined by serum levels < 1.0 mg/dL (0.32 mmol/L) and may lead to 
ventricular arrhythmias, altered cardiac and respiratory functions and 
possibly cardiac death. The exact prevalence of hypophosphatemia is 
unknown but it is estimated at < 1% [54].

Aetiology

The general causes of hypophosphatemia in hospitalized patients 
include (i) decreased intestinal absorption of phosphorous; (ii) 
redistribution of phosphorous from the extracellular to the intracellular 
compartment; and (iii) increased loss of phosphorous through kidney 
or any combination of these processes [53-56]. Decreased dietary 
intake alone rarely causes hypophosphatemia probably because of 
enhancement of renal phosphate reabsorption to compensate for 
decreased intake [53]. Since vitamin D (1,25-dihydroxyvitamin D) 
is necessary for intestinal absorption of phosphate, its deficiency 
associated with the lack of exposure to sunlight or inadequate amounts 
in diet leading to intestinal malabsorption of vitamin phosphate. Liver 
disease associated with biliary obstruction may result in decreased 
production of 1,25-dihydroxyvitamin D [56]. In humans, phosphate-
binding antacids can cause hypophosphatemia by preventing intestinal 
phosphate absorption [57-59]. Although significant hypophosphatemia 
does not occur when antacids are consumed with a normal diet, when 
phosphorous-deficient diet or in the setting of decreased phosphate 
concentrations, the use of phosphate-binding antacids may cause 
severe hypophosphatemia [53].

Increased renal excretion of phosphate is another common cause 
of hypophosphatemia. Increased urinary excretion of phosphate 
occurs in patients with primary hyperparathyroidism, and in those 
with secondary hyperparathyroidism associated with hypocalcaemia 
and intact renal function [54]. Renal tubular defects such as Fanconi 
syndrome and hereditary vitamin D-resistant rickets in humans can 
lead to phosphate wasting and moderate hypophosphatemia [53]. 
Diuretics such as acetazolamide, furosemide and thiazides mal also 
result in hypophosphatemia secondary to renal phosphate loss. Sodium 
bicarbonate administration can cause increased urinary phosphate 
excretion through increased fractional excretion of phosphate into the 
urine secondary to volume expansion and decreased ionized calcium 
secondary to alkalosis and dilution stimulates PTH release with 
subsequent phosphaturia. Chronic administration of glucocorticoids 
may cause hypophosphatemia by redistributing phosphate from 
extracellular fluid space to the intracellular space by increasing 
phosphate excretion in the urine [53,54].

A shift of phosphate out of the extracellular fluid into the 
intracellular space is the most common cause of hypophosphatemia 
in humans. An increase in the use of intracellular inorganic 
phosphate in glycolysis may be responsible for the intracellular shift 
of phosphate [60]. Conditions associated with an intracellular shift 
of phosphate include infusions of insulin or glucose, respiratory 
alkalosis and hyperalimentatin [60,61]. Recently, acute respiratory 
alkalosis and refeeding of malnourished patients (metabolic 
alkalosis) is a common cause of phosphorous redistribution with a 
greater reduction of phosphate observed in respiratory alkalosis 
[62,63]. During respiratory alkalosis, intracellular CO2 decreases 
causing intracellular pH to rise and stimulates the glycolytic pathway, 
enhances the production of sugar phosphates, which includes 
intracellular phosphorous entry and consequently decreasing serum 
phosphorous concentration [64]. Respiratory alkalosis also increases 
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phosphorous uptake by muscles. The kidney response by increasing 
phosphate reabsorption independent of serum levels of phosphorous 
and becomes refractory to phosphaturic effect of PTH [54]. Finally, 
phosphorous redistribution of phosphorus and hypophosphatemia 
occur in leukaemia patients with rapidly replicating tumour cells, 
following hematopoietic reconstitution after allogenic peripheral blood 
stem cell transplantation and after parathyroidectomy [54].

Pathogenesis

The pathogenesis of hypophosphatemic CM is remains unclear. 
However, a systematic review of 11 primary studies comprising case 
reports or series, case-control study and animal studies performed 
between 1971 and 2015 suggested a number of possible pathogenic 
mechanisms [55]. The first is altered cardiac energy production. 
Phosphorous is involved in the glycolytic pathway in the generation 
of the high-energy phosphate bonds of adenosine triphosphate 
(ATP) and the formation of 2,3-diphosphoglycerate (2,3-DPG). The 
mechanisms of hypophosphatemic CM may be due to the depletion of 
ATP in cardiomyocytes and decreased 2,3-DPG in erythrocytes. ATP 
is the standard molecule for cellular energy in the human body. The 
heart has a high-energy demand with little reserves and thus cardiac 
demand for ATP is significant, constituting > 5 kg of ATP per day or 
2 metric tons per year [65]. To meet this high cardiac energy demand, 
mitochondria occupies about 25% to 33% of each ventricular cell, whose 
primary function is to generate ATP to maintain cardiac contractility. 
Theoretically, the depletion of ATP can lead to cardiac contractile 
dysfunction. The use of 31P-magnetic resonance spectroscopy can 
measure cardiac ATP by providing an index of energetic state of the 
heart by mean of phosphocreatine-to-ATP ratio. However, the use 
of magnetic spectroscopy is limited to research due to low temporal 
and spatial resolution and low reproducibility [65]. Thus, limited use 
of magnetic spectroscopy in clinical setting denies evidence-based 
data to verify the altered cardiac energy theory of the pathogenesis of 
hypophosphatemic CM.

The second possible pathogenic mechanism of hypophosphatemic 
CM is impaired oxygen delivery to the tissues due to decreased 
production of ATP and 2,3-DPG. Hypophosphatemia due to parenteral 
nutrition has been shown to lead to a 52% reduction of ATP and 45% 
reduction of 2,3-DPG levels within erythrocytes. ATP and 2,3-DOG 
bind to haemoglobin and decrease cells’ affinity for oxygen resulting 
into its release into the tissues [66]. Normally, erythrocytes have nearly 
three-times more 2,3-DPG than ATP. Decreased intracellular 2,3-DPG 
results in a leftward shift of the oxy-haemoglobin dissociation curve 
and consequently tissue hypoxia. Under anaerobic conditions due to 
decreased tissue oxygen supply, one mole of glucose yield only two 
moles of ATP while under fully oxidized conditions, the same amount 
yields about 26 moles of ATP. Patients with severe HF have substantially 
reduced oxygen-haemoglobin binding and higher than normal 2,3-
DPG levels, though to be an important mechanism to maintain 
adequate oxygen transport [67]. Eliminating this adaptive mechanism 
causes an increase in cardiac output and coronary blood flow to meet 
the same resting metabolic demands. In the setting of limited cardiac 
function and impaired coronary blood flow, a decrease in 2,3-DPG may 
potentially aggravate the imbalance between metabolic demands and 
tissue oxygen supple and lead to myocardial ischemia [55].

The third possible pathogenic mechanism of hypophosphatemic 
CM is the involvement of a recently identified molecule of the fibroblast 
growth factor (FGF) family, (FGF-23) – a serum constituent involved 
in phosphate metabolism. Alongside PTH and vitamin D, FGF-23 
mobilizes sodium phosphate co-transporters in coordination with 

Klotho – a transmembrane protein with anti-aging properties. Patients 
with severe renal disease have high levels of circulating FGF-23 and are 
at risk for cardiac complications, suggesting the involvement of FGF-
23 in cardiac disease. Moreover, in a study of 100 coronary care unit 
patients with renal insufficiency, Shibata et al. [68] positively correlated 
circulating FGF-23 levels with LV mass and reduced LV ejection fraction 
(LVEF), which is independent of renal function and other parameters 
related to calcium-phosphate metabolism. In contrast, in patients with 
chronic kidney disease, increased levels of FGF-23 is associated with 
hyperphosphatemia rather than hypophosphatemia suggesting that 
higher FGF-23 is just a bystander in patients with advanced kidney 
disease and cardiac diseases [68]. Such conflicting findings warrants 
further longitudinal studies to clarify the role of FGF-23 in cardiac 
disease.

Clinical presentation

Clinical presentation of patients with hypophosphatemic CM 
depends on serum phosphate levels, which varies from asymptomatic 
to severe symptoms including cardiac arrest [69-72]. Signs and 
symptoms of hypophosphatemic CM include muscle weakness, cardiac 
arrhythmias, rhabdomyolysis, paraesthesia, motor neuropathy, ataxia, 
hallucination, seizure, haemolysis, and insulin resistance [73]. Serious 
symptoms such as muscle weakness and cardiac arrhythmias often 
manifests when serum phosphate levels decrease to < 1.0 mg/dL [74]. 
Patients with severe hypophosphatemia have a greater incidence of 
ventricular arrhythmias in acute myocardial infraction and greater need 
for vasoactive drug titration after cardiac surgeries [75,76]. Correction 
of hypophosphatemia often leads to a reversal of clinical manifestations 
[75,77,78]. Hypophosphatemia is considered a cause of reversible CM 
[55].

Diagnosis and management

Hypophosphatemic CM lacks evidence-based or expert consensus 
guidelines for diagnosis. Currently, diagnosis is achieved by excluding 
known causes of CMs such as cardiac ischemia, hypertension, rheumatic 
heart diseases and congenital abnormalities as well as reversible causes 
such as alcohol, toxins, infection and metabolic abnormalities [25]. 
However, current evidence on diagnosis is based on case reports that do 
not explain confounding factors that may reverse hypophosphatemic 
CM. Diagnosis for hypophosphatemic CM consists of two steps. The 
first is to determine the underlying cause through taking detailed 
patient’s medical history. If the cause is iatrogenic (hypophosphatemia 
results from the combination of interferon and ribavirin for hepatitis 
C virus infection, the risk and benefits of the causative treatment 
must be weighed. Patient history can help determine the cause of 
hypophosphatemia – decreased intestinal absorption, increased urinary 
excretion and removal by renal replacement therapies [55]. 

If patient’s history does not clarify aetiology, urinary phosphate 
excretion can be measured to assist diagnosis [79]. The 24-hour 
collection and calculation of fractional excretion of filtered phosphate 
(FEPO) are valid to determine aetiology. 24-hour urine excretion < 100 
mg or FEPO4 < 5% suggests renal phosphate conservation and most 
likely the patient has internal redistribution or decreased intestinal 
absorption. A 24-hour urine phosphate excretion > 100 mg or FEPO4 
> 5% in the presence of hypophosphatemia suggests renal phosphate 
wasting indicating hyperparathyroidism or vitamin D deficiency is the 
cause. Second, once establishing the diagnosis of hypophosphatemia, 
disease severity should be ascertained. In mild to moderate disease in 
non-mechanically ventilated patients, oral supplementation is sufficient. 
In severe hypophosphatemia, intravenous phosphate replacement 
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therapy is often recommended. Phosphate supplementation therapy 
is associated with reversal of symptoms and cardiac structure and 
function obviating the need for standard HF medication [53,55].

Hypomagnesaemic cardiomyopathy
Overview

Magnesium is the second most abundant intracellular ion. It 
is naturally present in many foods as well as available as a dietary 
supplement. Its relationship with CV system, arterial hypertension, 
central nervous system, skeletal muscles and pregnancy is an established 
knowledge [80,81]. It is involved in essential metabolic processes 
including ATP-dependent biochemical reactions, synthesis of DNA, 
RNA expression, cell signalling at muscle and nerve levels, and glucose 
and blood pressure control, among others [82]. In the human body, high 
magnesium concentration occur in bones, and only 1% in the serum and 
31% in the intracellular space diluted in the cytoplasm or conjuncted to 
enzymes or ATP [80]. The usual daily magnesium consumption is 200 
to 300 mg but although only a third of this quantity is absorbed through 
the small intestine. Renal excretion rate of magnesium is 100 mg/day 
while normal serum values for magnesium is 0.75 to 1.5 mmol/L and 
values less than 0.75 mmol/L is considered hypomagnesium [80]. 
Magnesium plays an essential role in mitochondrial integrity, oxidative 
phosphorylation, protein synthesis, nucleic acid stability, membrane 
permeability and neuro-muscular excitability [81]. Hypomagnesium 
has been shown to induce other electrolyte imbalance conditions 
including hypocalcaemia, hypokalaemia and hypophosphatemia. 
Since magnesium is not routinely measured, its significance in CV 
disease (CVD) is often overlooked. A number of studies have described 
hypomagnesium and CVD including atherosclerosis, ischemic heart 
disease, and coronary risk factors such as coronary artery spasms, 
myocardial infarction, thrombosis and arrhythmias. However, 
hypomagnesium as a cause of CM is uncommon and very rare [83,84].

Evidence based on animal studies

Hypomagnesium has been implicated as a cause of CM in both 
human and animal studies [81,85-88]. In animal models, hamsters 
fed with a magnesium deficient diet developed CM with foci of 
myocardial necrosis, calcification and modest mononuclear and giant 
cell infiltration. Moreover, hamsters administered with nifedipine had 
a hose-dependent reduction in lesion abundance and diameter whereas 
hamster administered with digoxin produced a dose-dependent 
increase in lesion abundance and diameter [84]. These findings support 
the hypothesis that lesions are secondary to calcium overload following 
an increase in myocardial sodium due to the inhibition of the Na+-
K+-ATPase and secondary sodium, calcium exchange in magnesium 
deficient state [88]. In a related study involving Syrian male hamsters 
fed on a magnesium-deficient diet or identical diet supplemented 
with MgCl were found more susceptible to ischaemia-induced 
cardiac injury in the setting of magnesium deficient [86]. Production 
and effects of catecholamines intensify during cellular magnesium 
depletion. The detrimental effect of high catecholamines levels and 
magnesium deficiency maybe synergistic in the myocardium [83]. In 
rabbits, magnesium supplementation reduces ultrastructural features of 
myocardial injury caused by epinephrine injection without an effect on 
changes in intracellular distribution of calcium-induced by epinephrine 
[89]. 

Evidence based on human studies

Human studies have also supported the role of magnesium 
deficiency in the development of CM. Patients with hypoparathyroidism 

can manifest CM, which responds to a dual supplementation therapy 
of magnesium and calcium [90]. Magnesium deficiency and CM 
are also commonly observed in patients with chronic or heavy 
alcohol consumption [91]. Individuals living in low magnesium 
equatorial regions and those consuming magnesium-deficient diet 
have been shown to develop spontaneous endomyocardial fibrosis of 
undetermined aetiology [91-93]. Post-mortem examination of their 
hearts reveal low concentrations of magnesium and high concentrations 
of thorium and cerium, which are thought to be cardiotoxic [83]. 
Kurnik et al. [81] reported a patient with bulimia who presented with 
magnesium deficiency resulting in refractory and eventually fatal CM. 
Despite evidence associating hypomagnesium with CM, there is need 
for clinical trials to clarify the pathogenic role of magnesium deficiency 
with CM in humans.

Renal abnormalities (uraemic) cardiomyopathy
Overview

The association between renal abnormalities (or chronic kidney 
disease [CKD]) and CVD is well-recognized and well-documented 
[94-98]. The term CKD encompasses all renal diseases (abnormalities) 
from the earliest stages through to end-stage renal disease (ESRD) that 
requires renal replacement therapy [98]. Uraemia (uremic syndrome) 
is a serious complication of CKD and acute kidney injury characterized 
by accumulation of urea and other waste products in the body due to 
the inability of the kidney to eliminate them [98]. In uraemic patients 
treated by dialysis, CVD accounts for >50% of mortality and the 
incidence of deaths is 5-10 fold greater in uraemic patients compared 
to age-matched general population [96,99]. The major cause of CVD-
associated death is myocardial ischemia although death may also due to 
HF and sudden cardiac death (SCD) [99]. Although most of the early 
evidence on CVD in CKD focussed on ESRD, recent evidence suggests 
CVD risk increases very early in the natural history of CKD. The risk 
of CVD death in early stage CKD far exceeds the risk of progressing 
to dialysis [94]. In CKD patients, typical echocardiography-defined 
cardiac abnormalities include systolic dysfunction, LV dilatation and 
LV hypertrophy (LVH) [100]. These complications are a consequence 
of the underlying CKD-related CM, which has been termed uraemic 
CM [100-102]. Although echocardiography reveals several CVD 
abnormalities (LVH, LV dilatation, LV systolic and diastolic dysfunction) 
in uraemic CM patients [103], Cardiac magnetic resonance imaging 
(CMRI) suggests LVH is the primary manifestation [104,105]. Thus, 
uraemic CM may be described as pathological cardiac hypertrophy in 
the setting of impaired renal function [96].

Pathophysiology

The pathophysiology of uraemic CM CKD or ERSD patients 
is multifactorial, but primarily involving LVH as well as other LV 
abnormalities [95,96]. Among ESRD patients, about 73.4% of those 
started on dialysis have LVH, 35.8% have LV dilatation and 14.8% 
have LV systolic dysfunction [100]. Usually, LVH does not regress or 
even aggravates with time on dialysis and its presence is associated 
with high risk or mortality and CV events including SCD [99]. LVH 
is the primary pathologic feature of uraemic CM associated with a 
reduction in capillary density, creating an imbalance between oxygen 
demand and supply leading to ischemia. In turn, ischemia promotes 
cardiomyocyte apoptosis as well as extracellular matrix and collagen 
accumulation leading to interstitial fibrosis, which induces LV stiffness, 
increased LV filling pressure, impaired diastolic filling and diastolic 
dysfunction. Furthermore, myocardial fibrosis aggravates ischemia 
by reducing capillary density and coronary reserve and increases the 
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risk of ventricular arrhythmias and SCD. Comorbid coronary disease, 
common in CKD and ESRD patients further contributes to ischemia, 
myocardial damage and fibrosis [95-100].

In CKD and ERSD patients, LVH manifests as a consequence 
of pressure overload, volume overload and the uraemic state itself 
[96]. LV pressure overload frequently results from hypertension and 
arteriosclerosis and occasionally from aortic stenosis. LV volume 
overload results from arteriovenous (AV) fistula, anaemia and 
hypervolemia. LV pressure or volume overload leads to the development 
of LVH. From a hemodynamic view, LVH is an adaptive remodelling 
process of the LV, which compensates the increased cardiac work 
induced by increased afterload, increased preload or both. However, 
continued LV overload may lead to maladaptive changes and death to 
the cardiomyocytes exacerbated by decreased perfusion, malnutrition, 
uraemia and hyperparathyroidism [96-98]. Cardiomyocyte loss may 
result in LV dilatation and ultimately systolic dysfunction. In addition, 
myocardial fibrosis may occur causing electrical derangement, which 
further diminishes cardiac compliance leading to diastolic dysfunction. 
Thus, while LVH is the primary manifestation of uraemic CM, more 
advanced disease can present with LV dilatation accompanied with 
systolic dysfunction and depressed LVEF [96]. Animal and human 
studies implicate uraemic state itself as the cause of the development 
of LVH, regardless of the pressure and volume overload. Correction 
of hypertension in rats with renal injury does not prevent LVH while 
subjecting renal injury to rats LVH develops [106,107]. In humans, LVH 
develops in high-risk populations with kidney disease despite effective 
control of hypertension and non-diabetic patients with known diabetic 
nephropathy developed blood-pressure independent LVH [108,109].

Recent evidence suggest that non-hemodynamic factors, principally 
hyperphosphatemia, may play a role in the pathophysiology of uraemic 
CM via inducing vascular calcification. Indeed, phosphotoxicity is 
considered the main cause of CVD mortality [110]. Vascular calcification 
is thought to be an active process regulated by cells, where ectopic 
deposition of calcium and phosphate salts occurs particularly in the 
muscular layers of arteries and heart valves [111]. Hyperphosphatemia 
induces vascular calcification via acting directly on type III Na+ 
dependent phosphate co-transporter of vascular smooth muscle 
cells thereby increasing intracellular phosphate level and activating 
bone formation-related gene expression [111]. Hyperphosphatemia 
is also toxic to endothelial cells (ECs) and may cause endothelial 
dysfunction, release of endothelial membrane micro-particles and 
induction of ECs apoptosis [112]. Although there is no direct evidence 
linking hyperphosphatemia with LVH, several studies demonstrate 
cardiomyocyte hypertrophy and myocardial fibrosis in animal fed with 
high-phosphate diet [102]. Hyperphosphatemia may lead indirectly 
to LVH by inducing hypertension, increased pulse pressure, cardiac 
afterload and apoptosis. Recently, high FGF-23 levels and αKlotho 
deficiency have been suggested to play a role in the pathophysiology 
uraemic CM but their precise roles have not been clarified [95].

Diagnosis
Diagnosis of uraemic CM lacks specific guidelines although it may 

borrow from diagnostic methods used on CKD and ESRD patients 
with HF, which consists of cardiac imaging (by echocardiography and/
or CMRI) and the assessment of serum levels of natriuretic peptides 
[113]. For CKD patients presenting with cardiac symptoms, 2D 
echocardiography including Doppler imaging is useful for assessing 
LV structure and function and for the diagnosis of the cause of LV 
dysfunction such as LVH, myocardial ischemia, valvular disease and 
pericardial effusion or constriction [114]. Echocardiography provides 

measurements of ventricular diameters and volumes, wall thickness, 
chamber geometry, LVEF and regional wall motion abnormalities as 
well as in the diagnosis of systolic (depressed LVEF) versus diastolic 
dysfunction (HF with preserved LVEF) [115]. For ERSD patients, 
the kidney disease outcomes quality initiative (KDOQI) guidelines 
recommend echocardiograms to be performed 1-3 months after 
initiation of dialysis and every 3 years thereafter regardless of 
symptoms [116]. CKD patients with significantly depressed LV systolic 
function should undergo evaluation for coronary artery disease using 
stress echocardiography, nuclear imaging or computed tomography 
angiography, or coronary angiography as recommended by KDOQI 
[116]. Cardiac MRI enables accurate evaluation of LV and LA volume 
and can detect myocardial viability and scar tissue [117]. However, 
cost and availability, as well as risk of nephrogenic systemic fibrosis 
from gadolinium contrast in CKD patients, it is not recommended as a 
routine imaging tests in CKD patients [114]. 

Laboratory tests for serum levels of natriuretic peptides (NPs) 
may provide diagnostic clue to prompt further imaging tests among 
HF patients, although there is no reliable evidence for their diagnostic 
and prognostic value or in guiding treatment in CKD or ERSD 
patients [114]. Ideally, atrial natriuretic peptides (ANP) and B-type 
natriuretic peptide (BNP) produced by atrial and ventricular myocytes 
is in response to an increase in atrial or ventricular diastolic filling 
pressure and wall distention [118,119]. Serum levels of BNP and NT-
proBNP reflect LV wall stress [118] and are greatly increased in HF 
patients and strongly correlate with severity of systolic and diastolic 
dysfunction as well as severity of HF as assessed by the New York Heart 
Association functional class [118,120-122]. BNP and NT-proBNP are 
also important independent prognostic markers of mortality and other 
cardiac endpoints in HF patients [60]. In CKD and ERSD, impaired 
renal clearance affect serum levels of NPs but still maintain a string 
relationship with LV end-diastolic wall stress [123]. In patients on 
dialysis, serums NPs show significant associations with LVH, LV 
systolic and diastolic dysfunction, and LA dilatation [123-127]. ECG 
abnormalities such as prolonged QT interval, increased QT dispersal, 
frequency of ectopic and tachyarrhythmias are frequently observed in 
CKD and ERSD patients [114].

Treatment

In uraemic CM, the predominant pathological feature is LVH, 
which is an independent predictor of survival and regression of LV 
is associated with reduced CV risk and improved survival [128-
130]. Conventional haemodialysis is the most common treatment 
for uraemic CM associated with reduction in LVH [131]. Dialysis, a 
mainstay treatment for patients with renal failure, has been described to 
reverse systolic dysfunction and improve LVEF in some ESRD patients 
[113]. Supplementary medication can include the contemporary HF 
medication. ACE-I has been shown to be effective even in normotensive 
patients. Ramipril for instance reduces LV mass in dialysis patients who 
were normotensive prior to therapy [132]. However, the beneficial effect 
of ACE-I beyond lowering blood pressure remains unclear although 
neuroendocrine mechanisms are thought to be implicated [133,134].

Meta-analysis of diagnosis of uraemic CM

Diagnosis and treatment of electrolyte imbalance and uraemic 
CMs lack specific guidelines. In particular, there are no clinical trials 
on electrolyte imbalance CM and the current evidence comes from case 
reports whose outcomes are less reliable relative to clinical trials as well 
as cannot form the basis of a meta-analysis. In the few trials mentioning 
electrolyte imbalance, it is discussed within the broader context of 
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DCM, which does not provide specific knowledge on diagnosis and 
treatment. Thus, further prospective large-scale clinical trials are 
warranted to clarify the current diagnostic and therapeutic strategies 
of electrolyte imbalance CM. Similarly, diagnosis and treatment of 
uraemic CM remains a clinical challenge due to heterogeneity of 
clinical features often leading to delayed diagnosis. LVH based on ECG 
or echocardiography is a typical diagnostic feature of uraemic CM 
although in patients with subclinical disease (have preserved systolic 
function and do not exhibit cardiac symptoms) diagnosis is often 
delayed. Recently, speckle tracking echocardiography (STE) and CMRI 
have shown promise to allow for early diagnosis as well as improve the 
accuracy of diagnosis. The STE modality is able to detect subclinical 
uraemic CM while CMRI to improve diagnosis and prognosis by 
detecting LVH and LV dilatation, which are often over-estimated on 
echocardiography. Thus, this section performs a meta-analysis of 
diagnostic methods for uraemic CM based on published data from 
clinical trials on CKD and ERSD patients.

The search for relevant studies was conducted on PubMed, 
Cochrane and Google Scholar. Key search terms used were uraemic 
cardiomyopathy and all its variants (chronic kidney disease, end stage 
renal disease, heart failure) and diagnosis (echocardiography, cardiac 
magnetic resonance, electrocardiography, serum natriuretic peptides). 
Additional manual search was conducted on reference lists of the 
included studies. There was no language restriction. Search results were 

screened by title, abstract and then full text to identify eligible trials 
fulfilling the inclusion criteria. Studies were considered if they assessed 
any of the following diagnostic methods – ECG, echocardiography, 
serum NPs and CMRI, and reported the following outcomes – LV 
function and structure, serum NPs levels or ECG abnormalities.

Results
Study characteristics

Of 264 studies yielded by the online database search, 18 studies 
met the inclusion criteria. A further seven (7) studies were identified 
by manual search of the references of the included studies, bringing the 
total number of studies forming the final dataset for meta-analysis to 
25 [135-160]. The included studies were published between 1999 and 
2018. Table 2 provides a summary of the characteristics of the included 
studies. In total, the 25 studies enrolled a combined patient population 
of 2,861, with mean age 50.42 (range 13.7 to 61.9 years) and a male 
preponderance (61.9%). Criteria for patient inclusion in the individual 
studies were patients with renal abnormalities - diagnosed with CKD or 
ERSD, pre-dialysis (evaluated for haemodialysis) or on haemodialysis 
thrice weekly and/or on renal transplant recipients. In particular, STE 
studies included patients with preserved LV systolic function (LVEF) 
and without signs and symptoms of cardiac dysfunction. Nine (9) clinical 
trials evaluating the diagnostic role of STE included control population 
totalling 337 healthy (non-CKD or ERSD) individuals for comparison 

Author   [Ref #] Year Patient 
No.

Male 
(n)

Mean Age 
(yrs.)

Criteria for patient 
selection

Diagnostic 
Test Summary of Key Findings

Hage [136] 2010 280 173 53±9 ESRD patients evaluated 
for kidney Tx ECG

QTc occurs in 39% of ESRD patients and an independent prognosticator of 
mortality, with a 5-year death rate at 47% and survival (HR: 1.008; 95% CI: 
1.001-1.014, p=0.016)

De Bie [137] 2012 277 172 56.3±17 Patients on chronic HD > 
3 months ECG

Abnormal QRS-T angle calculated from 12-ECG (≥1300 in men and ≥1160in 
women) was associated with higher risk of all-cause death (HR: 2.99; 95% 
CI: 1.04-8.60)

Genovesi [138] 2013 122 79 71.3 Patients on HD ECG
Prolonged QTc (>450 ms in men; >460 ms in women) occur in 36% of 
patients, and an independent predictor of all-cause mortality (HR: 2.16: 95% 
CI: 1.20-3.91) and SCD (HR: 8.33; 95% CI: 1.71-40.48)

Tereshchenko 
[139] 2016 358 211 55±13 ESRD patients on HD ECG QTc ≥750 was associated with increased CV mortality (HR: 2.99; 95% CI: 

1.31-6.82) and SCD (HR: 4.52; 95% CI: 1.17-17.40)

Shafi [140] 2017 124 72 49.9±13.8 CKD patients not on renal 
replacement therapy ECG

ECG abnormality occurred in 78.4% of all CKD patients: LVH (40%), Q 
waves (27.2%), ST-segment changes (17.6%), prolonged QRS duration 
(19.2%), and tachycardia (17.6%)

Stewart [141] 2005 55 33 46.8±14.1 Non-diabetic renal disease 
on HD ECG, Echo

Incidence of LVH correlated with renal function, ranging from 39% in near 
normal renal function to 80% with renal allograft. LVMI is also highest in 
HD patients

Stewart [142] 1999 32 21 NA Patients undergoing HD 3 
times per week CMRI, Echo

LV hypertrophy and dilatation are common in HD patients. Echo significantly 
overestimates LV mass relative to CMRI in the presence of LVH and LV 
dilatation

Mark [143] 2006 134 92 52.2±10.4 ESRD patients evaluated 
for renal Tx CMRI

14.2% patients had sub-endocardial LGE, 14.2% diffuse LGE, and 28.4% 
myocardial fibrosis.  LVH is predominant to uraemic CM while LVH and 
dilation are due to underlying ischemic heart disease.

Patel [144] 2009 246 157 51.4±12.1 Patients on HD 3 times 
weekly for > 3 months CMRI LVH occur in 63.8% of patients. Both LVH and LVM are associated with 

higher end diastolic and systolic volumes

Ebeid [145] 2017 30 15 41.3±11.6 ESRD patients on 
maintenance HD CMRI, Echo Echo overestimated LVM and LVMI than CMRI as well as LVH detection 

(66.6%) compared to 36.7% in CMRI.

Rutherford [146] 2017 24 15 61.2±13.4 Patients undergoing HD 
for < 12 months CMRI CMRI reveals after 6 months HD a reduction in LVMI (78.8 to 69.9 g/m2), 

improved GLS (-17.9 to -21.6%) and troponin T (38.8 to 30.8 pg/L)

Gong [147] 2018 40 28 56±11 Patients with ESRD and 
kidney Tx CMRI In 12 months, kidney Tx is associated with improvement in GCS and GRS 

correlate with reduction in LVEDV index and LVESV index

Pecoits-Filho 
[148] 2010 50 NR 62.8±2.2 Uraemic CM patients 

undergoing HD 2D-Echo
Uremic CM patients have higher mean natriuretic peptides levels (NT-
proBNP, BNP, ANP). Post HD NT-proBNP increased by 14%, BNP and ANP 
decreased by 17% and 56%.

Altekin [149] 2014 87 NR NR
ESRD patients with 
preserved ejection 
fraction on HD

2D-Echo STE

Compared to controls, ESRD patients have significantly reduced GRS 
(45.17±17.28 vs. 53.97±14.29); GLS (-19.71±3.1 vs. -30.13±2.1) but 
preserved LVEF (64.39±5.7%) due to preserved GCS (19.42±7.14 vs. 
18.57±4.12, p=0.155)

Table 2. Summary of characteristics of the included studies
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with uraemic patients [145,149,150,152,154,156-159]. A greater 
majority of the studies (n=16; 64%) evaluated either echocardiography 
(conventional, Doppler or STE) alone or in combination with ECG 
or CMRI [141,142,145,148-160], and six (6) each (48%), provided 
diagnostic data on CMRI [141-146] and ECG [136-141]. 

Study outcomes 

In a pooled analysis of three studies [136,137,140], LVH based on 
ECG’s Cornell voltage criteria was the most common diagnostic feature 
(ECG abnormality) that occurred in 237 out of 681 patients (Event rate 
[ER]: 34.8%; 95% CI: 19.0 to 54.8). Prolonged QTc (> 450 ms) pooled 
from three studies [136,138,140] was also common in 162 out of 526 
patients (ER: 25.0%; 95% CI: 12.1 to 44.6). Other less common ECG 
abnormalities reported in two studies (136,140) is prolonged QRS 
duration (> 100 ms) in 75 out of 404 patients (ER: 18.6%; 95% CI: 
15.1 to 22.7) and prolonged PR interval (> 200 msec) in 43 out of 404 
patients (ER: 14.7%; 95% CI: 11.1 to 19.2) (Table 3). In four studies 
[136,137,140,141], the weighted mean of QTc is 437 ms (Figures 1 and 
2) and QRS duration is 97 ms 

Pooled data from 11 echocardiographic studies [145,148-150,153-
155,157-160] reveal they enrolled CKD and ERSD patients on 
haemodialysis with preserved systolic function (weighted mean LVEF: 
57.65%; 95% CI: 55.16 to 60.14). In four studies [152,163,155,157] 
there were fewer cases of LV hypertrophy found in 107 out of 284 
patients (ER: 26.2%; 95% CI: 13.6 to 44.5). In two CMRI studies 
[143,144], pooled data reveals higher cases of LVH (ER: 67.3%; 95% 
CI: 59.2 to 74.4). Compared to healthy controls, there is a tendency 

towards increased LVEDD on echocardiography in uraemic CM 
patients (WMD: 4.536 mm; 95% CI: -0.865 to 9.937; p = 0.100: Figure 
3) [150,154,157,159,160]. On Doppler echocardiography, there was a 
trend towards decreased E/A ratio (a non-significant decrease) among 
uraemic patients compared to controls (WMD: -0.145; 95% CI: -0.371 
to 0.081; p = 0.209; Figure 4) [150,154,157,159,160] and significantly 
increased E/E; ratio (WMD: 3.227; 95% CI: 2.711 to 3.943; p = 0.000; 
Figure 5) [150,152,159,160].

In uraemic CM patients with preserved LVEF, STE reveals 
impairment in the LV longitudinal and circumferential deformation 
indices compared with age-matched healthy controls. In a pooled data 
in 8 studies [146,147,150-152,156,157,160], STE detected a small but 
significant decrease in LV global longitudinal strain (GLS) in uraemic 
CM patients (WMD: 4.028; 95% CI: 1.921 to 6.136; p = 0.000; Figure 
6). In two studies [10,12], GLS was also an independent prognostic 
indicator of mortality in uraemic CM patients (Hazard ratio [HR]: 
1.166; 95% CI: 1.087-1.250; p= 0.000). In a pooled analysis of six 
studies [147,151,152,156,157,160], there was also a significant decrease 
in global circumferential strain (GCS) in uraemic CM patients (WMD: 
1.234; 95% CI: -0.049 to 1.518; p = 0.060; Figure 7). In four studies 
[147,149,151,157] there was a tendency towards decreased global radial 
strain (GRS) in uraemic CM patients (WMD: 2.864; 95% CI: -6.558 to 
12.287; p = 0.551; Figure 8). 

Discussion
High mortality and morbidity among CKD patients on dialysis 

and/or renal transplant remain an important and unresolved clinical 

Author   [Ref #] Year Patient 
No.

Male 
(n)

Mean Age 
(yrs.)

Criteria for patient 
selection

Diagnostic 
Test Summary of Key Findings

Chen [150] 2014 35 19 52.7±7.6 CKDP patients on HD 
and uraemia 2D-Echo STE

3D-STE may detect myocardial dysfunction (SD strain and regional 
longitudinal strain) in uraemia patients on HD with preserved LVEF 
(57.8±1.9%)

Kramann [151] 2014 171 111 NR ESRD patients on dialysis 
eligible for STE 2D-Echo STE Over 2.1±0.9 year follow-up 44% died. Predictors of mortality: LVEF (HR: 

0.97; 95% CI: 0.95-0.99); GLS (HR: 1.17; 95% CI: 1.07-1.28)

Panoulas [152] 2014 39 21 57.4±14.6 CKD patients not on HD 
and with preserved EF 2D-Echo STE

In CKD without CV symptoms and preserved LVEF, STE can identify 
subclinical abnormalities decreased GLS (-18.01±2.64 vs. -20.67±3.06 
control) and LV twist (24.6±5.35 vs. 16.2±4.8 control)

Krishnasamy 
[153] 2015 183 105 55±15 Patients with ESRD and/

or on HD for > 3 months 2D-Echo STE

Over 7.8 years follow-up, 61.2% died. GLS is a predictor of all-cause 
mortality (HR: 1.09; 95% CI: 1.02-1.16) and CV mortality (HR: 1.16; 95% 
CI: 1.04-1.30). Impaired GLS > -16% has 5.6 fold increased in the risk for 
CV mortality in patients with preserved LVEF

Ali [154] 2016 49 32 42.9±15.13
Uraemic patients with 
preserved systolic 
function on  HD

2D-Echo STE
RV and LV longitudinal strains are significantly lower in patients than in 
controls (-9.6 vs. -15.3 for RV and -11.3 vs.-14.8 for LV) despite normal 
systolic function.

Ibrahim [155] 2016 26 12 45.4±16.6 CKD patients on dialysis 2D-Echo STE
After HD there is significant reduction in peak systolic GLS in ling axis 
(-19.32±4.3 to -16.58±3.87), GLS in apical 4-chamber view (-17.73±4.76 to 
-15.98±3.7) and GLS average (-18.59±3.96 to -16.45±3.31)

Hassanin [156] 2016 90 NA 49.3±14 Patients in various stages 
of CKD 2D-Echo STE

Compared to controls. CKD patients have reduced LV longitudinal strain 
(-16.9±3.8 vs. -22.5±0.6), early diastolic strain rate (1.6±0.5% vs. 2.3±0.2%) 
and late diastolic strain rate (1.3±0.4% vs. 1.9±0.1%) despite preserved LVEF

Van Huis [157] 2016 36 33 15.1     (1.2-
17.9)

ESRD paediatric patients 
on HD and Tx 2D-Echo STE

Interventricular and LV posterior wall thickness are increased in HD and Tx 
patients and reduced GLS compared to controls with no significant different 
in LVEF

Hensen [158] 2017 304 200 62±14 Pre-dialysis and HD CKD 
patients 2D-Echo STE

Over 29 months follow-up, 34% died. LV GLS ≤10.6% showed significantly 
worse prognosis and increase risk of all-cause mortality (HR: 2.18; 95% CI: 
1.17-4.06)

Ma [159] 2018 31 NR NR
Clinically stable uremic 
outpatients on HD 3 times 
per week

2D-Echo STE
2D-STE cam identify LV myocardial abnormalities (Significantly reduced 
basal, mod and apical longitudinal strain) in uraemic CM patients with 
preserved LVEF

Tamulenaite 
[160] 2018 38 19 58.6    (49.8-

72.0)

ESRD patients on chronic 
HD with preserved LVEF 
on echo

2D-Echo STE
ESRD patients on HD had preserved LVEF and  lower LV GLS (-22.43±2.71 
vs. -24.73±2.03); GCS at mitral valve (-18.73±3.49 vs. -21.67±2.22) and 
GCS at papillary muscles (-18.64±2.75 vs. -25.45±2.48

CKD: Chronic Kidney Disease; CM: Cardiomyopathy; CMRI: Cardiac Magnetic Resonance Imaging; CV: Cardiovascular; ECG: Electrocardiography; ESRD: End Stage Renal Disease; 
GLS: Global Longitudinal Strain; GCS: Global Circumferential Strain; GRS: Global Radial Strain; HD: Haemodialysis; LVEF: Left Ventricular Ejection Fraction; NR: Not Reported; 
STE: Speckle Tracking Echocardiography; Tx: Transplantation
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Figure 1. Weighted mean and 95% CI for QTc

Figure 2. Weighted mean and 95% CI for QRS duration

Figure 3. Weighted mean difference LVEDD for CM and control patients

ECG Abnormality No. of Studies [Reference #] No. of Patients Event Rate (%) 95% CI
LVH 3 [136,137,140] 237/681 34.8 19.0 to 54.8

Prolonged QTc 3 [136,138,140] 165/526 25.0 12.1 to 44.6
Prolonged QRSd 2 [136,140] 75/404 18.6 15.1 to 22.7

Prolonged PR Interval 2 [136,140] 43/404 14.7 11.1 to 19.2

Table 3. ECG abnormalities in uraemic CM patients

LVH: Left Ventricular Hypertrophy; QRSd: QRS Duration
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Figure 5. Weighted mean difference EE’ ratio for CM and control patients

Figure 6. Weighted mean difference GLS for CM and control patients

Figure 7. Weighted mean difference GCS for CM and control patients

Figure 4. Weighted mean difference EA ratio for CM and control patients
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issue often manifesting as uraemic CM. in these patients, cardiac 
abnormalities especially abnormal LV geometry and functions 
are common and correlate with a high CV mortality and all-cause 
mortality [161,162]. Early identification of these high-risk patients 
should allow physicians to optimize therapy, which may lower 
morbidity and mortality [162]. The present meta-analysis finds ECG, 
echocardiography and CMRI may play important roles in the diagnosis 
of uraemic CM. Standard 12-lead ECG (based on Cornell voltage 
criteria) can detect LVH in 34.8% and prolonged QTc (> 450 ms) in 25% 
of uraemic CM patients. Prolonged QRS duration (> 100 ms) and PR 
interval (> 200 msec) are less common, occurring in 18.6% and 14.7% 
respectively. In asymptomatic uraemic CM patients with preserved 
LVEF (57.65%), echocardiography reveals fewer cases of LVH (26.2%) 
while higher on CMRI (67.3%). Echocardiography reveals an increasing 
trend of LVEDD and decreasing trend on E/A ratio but significantly 
increased E/E’ ratio in uraemic CM patients. However, STE is merging 
as echocardiography modality capable of detecting subclinical changes 
such as impaired LV GLS and GCS in patients with preserved LVEF as 
well as associates GLS with an increased risk of mortality (HR: 1.166; 
95% CI: 1.087-1.250). 

The present findings on the value of ECG, echocardiography and 
CMRI on the diagnosis of uraemic CM patients is consistent with 
previous review studies. Reviews of echocardiographic studies report a 
high prevalence of cardiac abnormalities in ESRD patients specifically 
LVH, systolic and/or diastolic dysfunction and ventricular dilatation, 
which portend a more ominous prognosis that conventional CV risk 
factors even when adjusted for coronary disease, which may explain 
the high incidence of SCD in this population [100,128]. Increased QT 
interval and dispersal on ECG is associated with LVH, the development 
of arrhythmias and SCD in ESRD patients including transplant 
recipients but the association in uraemic CM patients is unknown. 
In patients with advanced or ESRD, QT interval is increased but QTc 
has a similar but less marked pattern. In a multivariate analysis, QTc is 
dependent on LVMI, EF, E/A ratio and LV end diastolic volume [141]. 
However, studies investigating changes in QTc with haemodialysis 
reveal mixed results. Over a 30% of dialysis patients have prolonged 
QTc interval prior to dialysis. Dialysis itself has a heterogeneous effect 
on QTc. Some indicating prolongation while others no effect possibly 
because of variation in patient characteristics and co-occurring cardiac 
comorbidities [163]. 

Left ventricular EF is the major aim of echocardiographic study 
used to reflect myocardial contraction strength. It is a longstanding 
recognized parameter in cardiology used in the evaluation of a wide 
range of heart conditions. However, patients with subclinical uraemic 

CM often have preserved LVEF and normal or near normal ventricular 
dimensions and diameter, which reduces the accuracy of conventional 
echocardiography in early diagnosis of uraemic CM [164]. The STE 
modality, a relatively new modality but extensively validated in many 
cardiac diseases, is emerging as a valuable test for the detection of 
subclinical cardiac changes. STE works by tracking myocardia speckles 
displacement, frame-by-frame in an angle dependent way to determine 
multiple aspects of LV contraction mechanics such as segmental 
displacement and velocity, strain and strain rate, rotations, twist/
torsion and its derivatives [165-167]. A strong correlation between GLS 
and LVEF (r=0.95; p < 0.001) and GLS rate (r=0.85; p< 0.001) have been 
described, which is stronger in patients with mild or severe systolic 
dysfunction compared to those with preserved LV function [164]. Thus, 
CKD or ERSD patients suspected with cardiac dysfunction should be 
considered for STE to evaluate for subclinical changes in ventricular 
structure and function. Recently, the use of 3D-STE is increasing, which 
promises to address intrinsic limitation of 2D-STE as well as improve 
reproducibility and accuracy of diagnosis [168]. Despite extensive 
validation of the STE modality, it remains an evolving technique and 
improvements such as tracking accuracy are still needed. This accuracy 
is also highly dependent on image quality since suboptimal resolution 
can produce negative impact on final results [164].

Besides STE, the use of CMRI can improve the diagnosis of the 
early stages of CKD, which is often underdiagnosed although the 
deleterious effect on the CV system are already at work. In Uraemic 
CM patients, the evaluation of early myocardial damage is essential to 
prevent major CV events [169,170]. Myocardial fibrosis is one of the 
major consequences of progressive CKD, which may lead to re-entry 
arrhythmias and chronic myocardial dysfunction predisposing patients 
to SCD and/or HF. LGE-CMRI was originally developed to detect 
chronic infarcted myocardium such as fibrous scar tissue but has also 
been found useful in the diagnosis of CMs. Subclinical myocardial 
fibrosis, which has a potential role in the development of uraemic CM, 
can be measured and characterized by LGE-CMRI modality [169]. 
The presence of LGE occurs in only 6% of cases of early CKD with no 
clinical evidence of CVD and 28% in ESRD patients [169]. The new 
uraemic pattern of LGE may help in differential diagnosis of CKD-
related diffuse fibrosis from ischemic scarring. LGE-defined diffuse 
fibrosis is associated with increased LV mass suggesting that LVH in 
end-stage CKD is pathological [143]. The main limitation of LGE-CMRI 
is that it is not sufficiently sensitive to detect diffuse form of myocardial 
fibrosis since the technique relies relative difference in signal intensities 
such as considering the lowest myocardial signal intensity as normal 
regardless of the degree of fibrosis [170]. Finally, severe consequences of 

Figure 8. Weighted mean difference GRS for CM and control patients
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gadolinium administration in uraemia (nephrogenic systemic fibrosis) 
is forcing practitioners to re-evaluate the use of the technique [169]. 

Conclusion
Electrolyte imbalance and renal abnormalities (uraemia) are less 

common causes of CMs but potentially reversible following early 
diagnosis and prompt initiation of appropriate treatment. Despite an 
ominous diagnosis associated with late diagnosis, electrolyte imbalance 
and uraemic CMs remain under-appreciated aetiologies of CMs 
often discussed in the context of dilated CM. Electrolyte imbalance 
capable of causing CM are hypocalcaemia, hypophosphatemia and 
hypomagnesaemia. Clinical presentation may vary widely and thus less 
useful for diagnosis. Diagnosis is by the exclusion of known causes of 
cardiac dysfunction and demonstration of significantly reduced serum 
levels of the culprit electrolyte (calcium, phosphate or magnesium). 
The mainstay treatment of hypocalcaemic, hypophosphatemic and 
hypomagnesaemic CMs is therapeutic supplementation by calcium, 
phosphate and magnesium respectively, which may be complemented 
by conventional HF medication for the management of signs and 
symptoms of cardiac dysfunction. Uraemic CM results from renal 
failure often manifesting in CKD or ESRD patients including those 
on haemodialysis or with renal transplants. Key pathological features 
are LV hypertrophy, dilatation and systolic dysfunction. Diagnosis for 
cardiac involvement in CKD or ERSD patients rests on a combination of 
ECG abnormalities (commonly prolonged QTc), and echocardiography 
or CMRI to demonstrate LVH, dilatation and systolic dysfunction. STE 
is promises to detect subclinical LV changes demonstrated by reduced 
GLS and GCS despite preserved LVEF. Treatment by haemodialysis 
promises to reverse cardiac function in some patients hut HF treatment 
remains unclear because current guidelines may not entirely apply 
to patients with severe renal impairment. Longitudinal or large-scale 
prospective studies are warranted to clarify diagnosis and treatment of 
electrolyte imbalance CMs and HF treatment in uraemic CM patients.
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