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Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising new immunotherapy that reprograms patient T lymphocytes to specifically recognize and kill tumor 
cells. CAR T cell therapy has produced some dramatic responses in acute lymphoblastic leukemia and lymphomas, but responses have been less spectacular in solid 
tumors. To make CAR T cell therapy effective for solid tumors, CAR T cells must overcome an immune-suppressive tumor microenvironment (TME) that attenuates 
CAR T cell function. This review provides insights into mechanisms of CAR T cell therapy resistance with respect to the TME and offers strategies for improving 
CAR T cell therapy by targeting immune-suppressive factors in tumors.
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Chimeric antigen receptor (CAR) T cell therapy
CAR T cell therapy is a promising new immunotherapy that 

provides potential curative treatments for cancer. CARs consist of a 
tumor-targeting monoclonal antibody-derived single chain variable 
fragment (scFv) fused to a T cell receptor-derived cytoplasmic 
signaling domain CD3ζ and one or more domains derived from co-
stimulatory T cell receptors CD28, 4-1BB, or OX40 (Figure 1A) [1]. 
When expressed by T cells, CARs redirect T cell specificity to antigens 
expressed on cancer cells. To deliver CAR T cell therapy, patient T 
cells are genetically modified to express CAR and then amplified ex 
vivo to numbers suitable for adoptive cell therapy [2]. Recent clinical 
data provided strong evidence that T cells from patients with B cell 
malignancies can successfully be redirected to initiate an effective 
anti-tumor response even at advanced stages of the disease [3-15]. In 
relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) and 
certain types of lymphoma, this strategy has led to dramatic complete 
responses in more than 80% of patients treated with CD19-targeting 
(CAR19) T cell therapies [3-15]. The FDA has recently approved the 
CAR T cell products axicabtagene ciloleucel and tisagenlecleucel to 
treat relapsed or refractory B-ALL and diffuse large B cell lymphoma 
(DLBCL) [8,12,16,17]. CAR T cells can thus be considered as “designer 
drugs” that are personalized to patients’ needs and manufactured to 
clinical standards.

Using viral vectors to transfer CAR genes to T cells requires 
complex protocols that are time-consuming and expensive. Compared 
to viral vectors, non-viral transposon-based gene delivery systems 
offer a simpler and cheaper alternative for CAR T manufacture with 
no infectious potential [18-20]. Novel CAR T cells generated using 
Sleeping Beauty (SB) and PiggyBac (PB) transposon/transposase 
systems have demonstrated strong efficacy against leukemia cells in 
preclinical mouse models [18-21]. This preclinical data provided the 
basis for testing transposon-based CAR T cells in clinical trials in 
USA, Australia and China [21-23]. Importantly, the decreased cost 
and complexity of non-viral genome modification methods can widen 

patient access to CAR T cell therapies by increasing the number of 
hospitals capable of implementing them.

Mechanisms and strategies to overcome immune sup-
pression in the tumor microenvironment (TME)

Recent clinical studies have shown that CAR T cells can cure select 
patients with cancer, while others experience transient or no clinical 
benefit [4,5,10,15,24,25]. Short duration of remission in patients 
treated with CAR T cells can be associated with functional CAR T 
cell exhaustion in the immune-suppressive TME [6,7,26,27]. The 
immune-suppressive TME considerably reduces the efficacy of CAR 
T cell therapy against solid tumors such as prostate [28-30], ovarian 
[31-35], breast [36-39], pancreatic [40-44], and brain [45] cancers. 
Disialoganglioside (GD2)-targeting CARs incorporating CD28 and 
OX40 co-stimulatory domains showed efficient CAR T cell infiltration 
of neuroblastoma tumors; however, the suppression of tumor growth 
was marginal, suggesting that CAR T cell function is compromised by 
the immune-suppressive TME [46,47].

The immune-suppressive TME is enriched with regulatory 
immune cells such as regulatory T cells (Tregs) [48-55], myeloid-
derived suppressor cells (MDSCs) [36,39,56,57], tumor-associated 
macrophages (TAMs) [58-60], and cancer-associated fibroblasts 
(CAFs) [35,61]. These regulatory immune cells inhibit CAR T cells 
by releasing suppressive factors such as TGF-β [28,30,58,62], IL-4 
[43,63,64], IL-10 [40], prostaglandin E2 (PGE2) [65], and immune-
suppressive metabolites such as kynurenine and adenosine via 
indolamine-2,3-dioxygenase (IDO) [59,66,67] and CD39/CD73 
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inhibitor, down-regulates PD-L1 expression in neuroblastoma and 
sensitizes neuroblastoma cells to CAR T cell therapy [47,85]. JQ1 also 
promotes CAR T cell activity by up-regulating interferon regulatory 
factor 7 (IRF7) signalling to activate type I interferon responses [47,85].

Combining CAR T cells with specific targeted drugs have been 
shown to promote CAR T cell function [67,84,87,89]. Ibrutinib is 
a small-molecule drug that binds permanently to Bruton’s tyrosine 
kinase and is used to treat chronic lymphocytic leukemia (CLL). CLL 
patients showed prolonged remission after combined treatment with 
ibrutinib and CAR19 T cells [84,87,89]. Ibrutinib induced mobilization 
of the disease into blood or bone marrow, where it is highly responsive 
to CAR T therapy [84,87,89]. Lenalidomide, another targeted drug 
for treating multiple myeloma (MM), delayed the onset of CAR T cell 
functional exhaustion in the immune-suppressive TME by potentiating 
CAR T cells that target B cell maturation antigens in MM [67].

Another promising strategy involves using checkpoint inhibitors to 
rejuvenate exhausted CAR T cells [70,75-83]. Up-regulation of specific 
checkpoint ligands such as PD-L1 in inflamed TME induces premature 
CAR T cell exhaustion. PD-1 checkpoint blockade with PD-1 and/or 
PD-L1 antagonistic antibodies [91-94] acts to rescue CAR T cells from 
exhaustion and improve their cytolytic activity in melanoma [77,95-
97]. PD-1 checkpoint inhibitors induced remission in B-ALL patients 
who relapsed following CAR T cell therapy [98], but did not promote 
CAR T cell efficacy in recent neuroblastoma clinical studies [99], 
suggesting that additional factors in the TME may be involved in CAR 
T cell exhaustion in neuroblastoma patients. 

Agents targeting Tregs, MDSCs, TAMs, and CAFs in the TME 
are currently being investigated in the context of CAR T cell therapy 
against hematological and solid tumors [100-107]. Macrophage colony 
stimulating factor 1 (CSF1) and granulocyte macrophage colony 
stimulating factor (GM-CSF) antagonists were shown to inhibit TAMs 
and MDSCs and promote CAR T cell function [100-102].

respectively [38,68-70]. Additionally, tumor cells often down-regulate 
T cell co-stimulatory ligands that would normally promote CAR T cell 
function, while up-regulating immune-suppressive ligands (MHC class 
II, galectin-9, PD-L1 and CD86) that activate immune checkpoints 
(LAG3, TIM-3, PD-1 and CTLA-4) in adoptively transferred CAR T 
cells (Figure 1B) [71]. Chemoresistant and chemorefractory pediatric 
B-ALLs exhibit significant interpatient heterogeneity in the expression 
of 35 genes that encode T cell co-stimulatory and inhibitory ligands, 
and in vitro models showed association of CD86, CD70, ICOSL, OX40, 
and IL-10 with CAR T cell expansion and exhaustion [26]. B-ALLs 
exhibit low expression of PD-L1 and CD80/CD86, which activates the 
PD-1 and CTLA-4 checkpoints in CAR T cells [26]. Unlike B-ALLs, 
T cell acute lymphoblastic leukemia (T-ALL) cells express high levels 
of PD-L1 and often CD80/CD86, and so can be considered as more 
immune-suppressive than B-ALL in this respect [26]. B-ALLs from 
some patients, however, express MHC class II and galectin-9 (Gal9) 
that bind to the LAG3 and TIM-3 receptors on CAR T cells to promote 
CAR T cell exhaustion and apoptosis [71].

CARs with multiple co-stimulatory domains and/or genome-edited 
checkpoint receptors have been engineered to mitigate the immune-
suppressive TME [70,72-83]. New approaches also combine CAR T 
cell therapy with chemotherapeutic drugs, epigenetic modulators, 
or targeted drugs that attenuate immune suppression in the TME in 
addition to direct anti-tumor activity [32,36,45,47,48,50,67,84-89]. 
Some epigenetic drugs up-regulate the tumor’s antigen expression for 
targeting by CAR T cells, up-regulate T cell co-stimulatory ligands, 
or induce type I interferon responses in tumors against pro-viruses 
integrated into target cell genomes [90]. The hypomethylating agent 
5-azacitidine (AZA) sensitizes leukemia and lymphoma cells to CAR 
T cell therapy by modulating the TME in leukemia and inducing 
OX40L to promote CAR T cell function [20,86]. Other epigenetic 
modulators down-regulate the immune-suppressive ligands that 
activate specific immune checkpoints in CAR T cells. JQ1, a potent 
small-molecule bromodomain and extra terminal domain (BET) 

Figure 1. (A) Chimeric antigen receptor (CAR) T cells. Derived from tumor-specific monoclonal antibodies, the extracellular single chain variable fragment (scFv) recognizes tumor-
associated antigens (TAA) and is connected via the hinge to the transmembrane domain (TM) that anchors to the CAR T cell’s plasma membrane. Attached to the TM are intracellular co-
stimulatory (CD28, 4-1BB, or OX40) and T cell receptor CD3ζ-derived signaling domains that activate the CAR T cell. (B) Immune-suppressive cells in the TME lower CAR T anti-tumor 
activity. Regulatory T cells (Tregs) inhibit CAR T cell proliferation and cytokine production via TIM-3 and prostaglandin E2 (PGE2). Myeloid-derived suppressor cells (MDSCs) suppress 
T cell activation via cystine (Cys-Cys) and cysteine (Cys) deprivation [72], and facilitate Tregs recruitment and expansion via IL-10 and TGF-β [73]. Type II tumor-associated macrophages 
(TAMs) release PGE2 and TGF-β, and express CD80/CD86 that preferentially binds to the inhibitory CTLA-4 receptor in CAR T cells. Cancer-associated fibroblasts (CAFs) physically 
prevent CAR T cells from accessing tumor antigens. Tumor cells express MHC class II, galectin-9 (Gal9), and PD-L1 that bind to the LAG3, TIM-3, and PD-1 receptors on CAR T cells to 
promote CAR T cell exhaustion and apoptosis [71]. Immune-suppressive metabolites kynurenine and adenosine are produced via indolamine-2,3-dioxygenase (IDO) and CD39/CD73, and 
IDO is involved in activation of Tregs [74]
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Conclusion
CAR T cell therapy has been a major breakthrough in cancer 

treatment. Despite encouraging clinical results in certain hematological 
malignancies, high resistance to CAR T cell therapies has often 
been reported in patients with solid tumors. Multiple mechanisms 
contributing to CAR T resistance have led to the design of complex 
therapeutic strategies to avoid immune suppression in the TME of solid 
tumors and to increase tumor cell susceptibility to CAR T cell attack. 
Resistance mechanisms need to be examined in different contexts in 
order to design effective therapeutic combinations and improve the 
efficacy of CAR T cell therapy. 
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