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Abstract
Food-grade bacteria, including lactic acid bacteria (LAB), are safe to ingest and are not associated with development of disease. The impact of LAB on health has 
been studied in depth from a clinical perspective. Evidence suggests that LAB benefit health in several ways, including improving the balance between probiotic and 
harmful bacteria in the intestine, protecting against pathogen infections, and modulating host immunity in the gut. Recent publications show that LAB are safe bio-
therapeutics that exert positive effects against various cancer types, including colorectal cancer (CRC). CRC develops in intestine and, unless treated early, will invade 
the surrounding tissue and spread to other parts of the body. One intrinsic advantage of food-grade LAB is that they can be applied easily as oral medications and 
act as vehicles for bio-therapeutics, which can be delivered directly to the mucosal surface of the intestine. Consequently, a LAB-based drug delivery system (DDS) 
can have synergistic effects: the patient derives benefit from both the LAB and the therapeutic cargo. Furthermore, the localized effect of LAB-based DDS in the 
intestine would ensure targeted treatment at the site of disease; this has the benefits of requiring a lower dose of a drug, with fewer systemic side effects. In this review, 
we discuss the evidence supporting the beneficial effects of LAB-based DDS and its application to CRC.
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Introduction 
Benefits of LAB

Lactic acid bacteria (LAB) and other probiotic bacteria are living 
supplementary organisms that are beneficial to the host; in addition, 
these bacteria are safe, with a history of use as a foodstuff going back 
thousands of years [1,2]. Two major advantages are their proven 
overall health benefits to the host and their potential as a vehicle for 
therapy [3]. Many studies have examined the role of the human gut 
microbiota; indeed, colonization of the gut by LAB provides balance 
and contributes to the health of the host [4]. A review by An et al. 
discusses recent insights into the cellular and molecular mechanisms 
underlying the beneficial effects of LAB; these mechanisms are related 
to cell cycle arrest, apoptosis, immune responses, inflammatory 
responses, antioxidant DNA damage, and epigenetics [5]. 

Potential of LAB as an anti-cancer therapeutic 

As well as providing health benefits in their own right, LAB can also 
play a role in therapy [3]. Indeed, animal and preliminary human studies 
demonstrate the therapeutic effects of LAB in the context of various 
diseases, including cancer [5,6]. Recent studies show that LAB suppress 
growth of colon, stomach, breast, cervix, and myeloid leukemia cells via 
multiple pathways [7,8]. Thus, LAB-based regimens are often used as 
an adjuvant during anti-cancer chemotherapy. However, because orally 
administered LAB reside in the gastrointestinal tract and colonize 
the host intestine, they are likely to be most useful as therapeutics 
for gastrointestinal cancers; indeed, numerous animal studies show 
the positive anti-cancer effects of LAB [5,9,10]. Colorectal cancer 
(CRC), which begins as a polyp, is the most common malignancy of 
the gastrointestinal tract and remains one of the most common causes 
of death worldwide [11]. However, LAB show promise as a means of 
preventing and suppressing progression of CRC [12]. Moreover, oral 
administration of LAB normalizes the balance within the intestinal 

microflora, improves the gastrointestinal barrier, inhibits the growth of 
potential pathogens, and suppresses carcinogenesis in the gut [5]. 

Genetic engineering of LAB 
Recent studies raise the possibility of using LAB as bio-therapeutic 

agents to develop cutting-edge cancer therapies. Genetic engineering 
methods have allowed modification of LAB, particularly Lactococcus 
lactis (L. lactis) and others, for industrial or medical purposes [13]. 
Gene expression systems have been developed to facilitate genetic 
engineering of LAB, thereby allowing controlled expression of target 
genes using various promoters that are regulated by sugar (the 
lactose operon promoter) [14] and salt (the gadC promoter) [15] 
concentrations, temperature upshifts (the tec phage promoter) [16], 
reduced pH (P170) [17], or phage infection (the phi31 promoter) [18]. 
Although promoter-inducible systems are not always easy to regulate, 
introduction of a well-characterized promoter might allow controlled 
expression of downstream genes and could be applied to diverse LAB 
species [19]. Future innovations regarding the therapeutic use of LAB 
are necessary to validate these improvements and establish reliable and 
safe therapeutic strategies. These challenges could lead to a medical 
breakthrough in the fields of immunotherapy and cancer treatment, 
as well as improve delivery of anti-inflammatory drugs to treat other 
bowel diseases.

Below, we discuss the genetic modification of LAB and their use 
as bio-therapeutic agents for cancer therapy. An important property 
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for humans [42]. A study by de Moreno de LeBlanc et al. suggests that 
oral administration of a catalase-producing Lactococcus lactis (L. lactis) 
protects mice from chemically induced CRC [43], whereas another 
study shows that localized delivery of therapeutic doses of interleukin 
(IL)-10 by genetically engineered L. lactis results in a 50% reduction 
in the incidence of colitis in mice, suggesting a potential treatment for 
inflammatory bowel disease [44]. In addition, Steidler et al. reported 
improved delivery of IL-10 via L. lactis using a bio-containment system 
based on genomic integration, in which the IL-10 gene was replaced by 
the thymidylate synthase gene (thyA) [45]. Increasing evidence suggests 
that genetic modification of LAB improves their health-promoting 
properties and their ability to protect against gastrointestinal diseases; 
furthermore, genetic modification means that LAB can be targeted to 
specific diseases with few, if any, toxic side effects. 

Conclusions
Current cancer therapies have limited efficacy because they are 

highly toxic to both cancer cells and normal tissue. A growing body of 
evidence suggests that LAB have chemopreventive effects, even though 
the magnitude of these effects (therapeutic activity) does not match that 
of chemical drugs. However, LAB can be used as a natural adjuvant 
for chemotherapy, and they can be engineered to deliver therapeutic 
payloads in a targeted manner. Many creative approaches have been 
used to exploit natural bacterial processes and/or to harness bacteria as 
therapy vectors and cancer cell destroyers. Some of the safety concerns 
associated with genetic engineering need to be overcome; however, 
we believe that LAB are an important new weapon in the fight against 
cancer and other immune diseases.
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of LAB is that they are regarded as “food-grade” because of their safe 
application as probiotics when compare with other bacteria.

Plasmid vector systems 

Plasmids, diverse expression systems that harbor selective markers, 
allow expression and maintenance of exogenous molecules in the host. 
Plasmids for LAB contain a replication source from a natural plasmid 
combined with a food-grade selection marker [20-23]. Food-grade 
selection markers for LAB are divided into two groups: selectable 
markers that confer a new phenotype (such as sugar utilization or 
bacteriocin resistance) [24], and complementation markers (e.g., 
alanine racemase [25] and thymidylate synthase [26]) that restore an 
impaired function to promote cell viability. Although plasmid vector 
systems are versatile, they have several limitations, including copy 
number alteration, loss of selection markers, and poor stability [27]. 

Chromosome modification systems

Allelic replacement in the chromosome is a natural phenomenon 
that allows genetic modification or insertion of stable DNA into 
host chromosomes without leaving behind unnecessary foreign 
DNA. Allelic replacement occurs via double crossover between two 
homologous regions that flank the modification and the corresponding 
region on the chromosome. This natural form of genetic transformation 
is common in Streptococcus pneumoniae (S. pneumoniae) [28] and 
Bacillus subtilis (B. subtilis) [29]. For example, direct homologous 
integration of a thermosensitive plasmid into the L. lactis chromosome 
carrying a chromosomal DNA fragment (≥500 bp) was achieved by 
sequential recombination of two fragment flanking modifications, 
such as nucleotide changes and DNA deletions or insertions [30]. 
This thermosensitive plasmid vector might be cured during several 
generations at 37℃; therefore, it might be useful for selecting food-
grade mutants containing a single insertion element (e.g., a new DNA 
fragment) in the genome [31]. 

Therapeutic applications

Whenever food is ingested, the gastrointestinal tract is exposed to 
environmental microbes (including probiotics or pathogens). Diseases 
of the gastrointestinal tract may be caused by invasion of harmful bacteria 
or pathogens. However, colonization of the human intestine by LAB has 
probiotic effects that benefit health by improving the balance between 
“good” and “bad” bacteria in the intestine [32]. Interestingly, some 
LAB strains may also be adapted to act as therapeutic microorganisms 
[33]. There are many diseases of the gastrointestinal tract; among 
these, the global incidence of CRC is continuing to increase [34,35]. 
Chemotherapeutic regimens are used routinely to treat advanced-stage 
colon cancer; however, the response rates are poor, and the treatments 
have adverse side effects [35,36]. Therefore, novel therapeutic or 
preventive agents with minimal or no side effects are required urgently. 
LAB are potential novel therapeutics that can be used to treat CRC; 
the location of these bacteria places them in a prime position to target 
CRC, thereby directly or indirectly preventing or treating the disease 
[37-39]. Many studies have used genetically modified LAB to improve 
their therapeutic capacity against CRC. For example, Cell Biotech have 
developed a genetically modified strain of Pediococcus pentosaceus, SL4 
(P. pentosaceus SL4), which secrets the LAB-derived anti-cancer protein 
p8; a previous study demonstrates significant suppression of CRC after 
oral administration to a mouse xenograft model [40]. In addition, we 
successfully constructed a mammalian expression vector harboring the 
p8 gene for use as a vehicle for gene therapy [41]. The advantage of these 
approaches is that LAB-derived proteins are both beneficial and safe 
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