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Abstract
The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnC03) shows complete solid solution with siderite (FeC03), and 
it may contain substantial amounts of Zn, Mg, Co, and Ca. Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials 
(CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH19Mn6O8, and the load distribution by the unit molecule by two widely used methods, 
Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMn6O8, where the load distribution by the molecule was 
verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis). 
The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G basis set, with δ = 2.922 e δ = 2.650 u.a., respectively, being δAPT > 
δMulliken. The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G basis set are present at the frequencies 2172.23 cm-1, with a normalized intensity 
of 0.65; 2231.4 cm-1 and 0.454; and 2177.24 cm-1 and 1.0, respectively. Later studies could check the advantages and disadvantages of rhodochrosite in the treatment 
of cancer through synchrotron radiation, such as one oscillator crystal.

Introduction 
The rhodochrosite as crystal oscillator for being an alternative to 

those of quartz. The rhodochrosite (MnC03) shows complete solid 
solution with siderite (FeC03), and it may contain substantial amounts 
of Zn, Mg, Co, and Ca. The electric charge that accumulates in certain 
solid materials, such as crystals, certain ceramics, and biological 
matter such as bone, DNA and various proteins in response to applied 
mechanical stress, phenomenon called piezoelectricity [1].

Through an unrestricted Hartree-Fock (UHF) computational 
simulation, Compact effective potentials (CEP), the infrared spectrum 
of the protonated rhodochrosite crystal, CH19Mn6O8, and the load 
distribution by the unit molecule by two widely used methods, Atomic 
Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite 
crystal unit cell of structure CMn6O8, where the load distribution by 
the molecule was verified in the UHF CEP-4G (Effective core potential 
(ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF 
CEP-121G (ECP triple-split basis).

The electronic oscillator circuit that uses the mechanical resonance 
of a vibrating crystal of piezoelectric material to create an electrical 
signal with a precise frequency is a crystal oscillator. The most common 
type of piezoelectric resonator used is the quartz crystal, so oscillator 
circuits incorporating them became known as crystal oscillators [2]. 
Quartz crystals are manufactured for frequencies from a few tens of 
kilohertz to hundreds of megahertz. More than two billion crystals are 
manufactured annually. Most are used for consumer devices such as 
wristwatches, clocks, radios, computers, cellphones, signal generators 
and oscilloscopes [3-12].

But other crystals such as rhodochrosite also have piezoelectric 
properties. The rhodochrosite as crystal oscillator for being an alternative 
to those of quartz. The rhodochrosite (MnC03) shows complete solid 
solution with siderite (FeC03), and it may contain substantial amounts 
of Zn, Mg, Co, and Ca. The Kutnohorite [CaMn(C03)2] is a dolomite 
group mineral intermediary between rhodochrosite and calcite [3-12].

The Figure 1 is one photography the Rhodochrosite stone from 
China.

Methods
Hartree-Fock Methods

The Hartree-Fock self–consistent method [14-20] is based on the 
one-electron approximation in which the motion of each electron 
in the effective field of all the other electrons is governed by a one-
particle Schrodinger¨ equation. The Hartree-Fock approximation 
takes into account of the correlation arising due to the electrons of the 
same spin, however, the motion of the electrons of the opposite spin 
remains uncorrelated in this approximation. The methods beyond 
self-consistent field methods, which treat the phenomenon associated 
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can be used to give .

Therefore, the Hartree-Fock energy of a diatomic or polyatomic 
molecule with only closed shells is

and

where the one-electron-operator symbol was changed from  to 
. [5]

Mulliken Load
Mulliken's loads are derived from the Mulliken population 

analysis and provide means for estimating partial atomic charges from 
numerical chemistry calculations, particularly those based on the linear 
combination of atomic orbitals. If the coefficients of the basic functions 
in the molecular orbital are Cμi for μe the basic function ie in the orbital 
molecular, the coefficients of the density matrix are:

for a compact closed system in which each molecular orbital is 
doubly occupied. The population matrix P therefore has the following 
coefficients:

S is the overlay matrix for basic functions. The sum of the set 
of terms of  is N - the total number of electrons. The Mulliken 
population analysis aims first of all to distribute the N electrons on all 
the basic functions. This is done by taking the diagonal elements of  
and factorizing the non-diagonal elements equally between the two 
appropriate basic functions. Non-diagonal terms including  and  
this simplifies the operation to a sum on a line. This defines the gross 
orbital population (GOB) as:

The terms  lie on N and then divide the total number of 
electrons between the basic functions. It then remains to sum these 
terms on all the basic functions of a given atom A in order to obtain 
the gross atomic population (GAP). The integral of the GAPA terms 
also gives N. The load, QA, is then defined as the difference between 
the number of electrons on the free isolated atom, which is the atomic 
number ZA, and the raw atomic population:

The problem with this approach is the even distribution of non-
diagonal terms between the two basic functions. This leads to charge 
separations between the molecules that are exaggerated. Many other 
methods are used to determine atomic charges in molecules [21, 22].

Concerning the nuclear contribution, the nuclear charge ZA can be 
written as ZA = qA + QA, where qA and QA account for the Mulliken net 
and gross atomic charge [21]. According to the Mulliken population 
analysis, the nuclear charge for A can be written as

with the many-electron system properly, are known as the electron 
correlation methods. 

The vast literature associated with these methods suggests that the 
following is a plausible hierarchy:

 

The extremes of ‘best’, FCI, and ‘worst’, HF, are irrefutable, but the 
intermediate methods are less clear and depend on the type of chemical 
problem being addressed. [14] The use of HF in the case of FCI was due 
to the computational cost.

The molecular Hartree-Fock wave function is written as an 
antisymmetrized product (Slater determinant) of spin-orbitals, each 
spin-orbital being a product of a spatial orbital  and a spin function 
(either  or ).

The expression for the Hartree-Fock molecular electronic energy 
is given by the variation theorem as 

where D is the Slater-determinant Hartree-Fock wave function and 
and  are given by

Since  does not involve electronic coordinates and D is 
normalized, we have . The 
operator is the sum of one-electron operators  and two-
electron operators  ; we have , where 

 and . The Hamiltonian 
is the same as the Hamiltonian  for an atom except that 
replaces  in  . Hence 

where

and

Figure 1. Rhodochrosite stone from China [13] 
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which upon substitution in the dipole moment expression yields

Note that  and  so that

 where

and 

The first two terms in eq. for  are of atomic origin where 
the first one, involving the net atomic charge, is the only term with 
a classical counterpart. The second term resembles Coulson’s atomic 
dipole, and the integral is the distance from the centroid of the 
hybrid orbital to nucleus A. For the third term, the integral is the 
distance of the center of charge from the midpoint of the chemical bond 
A-B. This contribution to the dipole moment has been referred to as the 
homopolar dipole [21] by Mulliken. As can be seen, the dipole moment 
has been partitioned into three contributions: the net atomic charge, 
the atomic dipole, and the homopolar dipole. Since the density matrix 
is invariant with respect to the choice of origin and since the sum of 
all net atomic charges vanishes, this partitioning of the dipole moment 
does not depend on the choice of origin for the system [5,23].

Atomic Polar Tensor (APT)

One of the most useful methods for interpreting and predicting 
infrared intensities comes from the atomic polar tensor (APT) formalism 
[24,25]. In the APT framework, the derivative of the molecular dipole 
moment vector with respect to the ith normal coordinate (which is 
directly related to the infrared intensity of the ith fundamental mode), 
can be expressed as

For each atom  in molecule, the quantities  where 
 and  form the APT, represent by a  matrix 

 So, if all the experimental infrared intensities and normal 
coordinates are known as well as the permanent dipole moment for a 
given molecule, the APT can be determined. On the other hand, these 
APTs can also be calculated by the SCF method and used to predict 
infrared intensities. These intensities can then be interpreted by 
partitioning the APT. This has been done before in the "charge-charge 

flux-overlap" (CCFO) model, first introduced by King and Mast [26,27] 
and later applied by Person et al. [28] 

The general expression for the APT is:

 

where E is the identity matrix and each term of the APT is represented 
by a 3 X 3 matrix. The four contributions in the above equation can 
be identified according to Person, Coulson, and Mulliken terminology 
as charge, charge flux, atomic dipole flux, and homopolar dipole flux. 
Comparing with the CCFO model, the difference introduced in this 
work lies in the fact that the overlap term has been decomposed into 
two flux contributions (atomic dipole and homopolar dipole fluxes).

In eq. for  , the first two terms are the only classical contributions, 
one of them being the Mulliken net charge of atom a in its equilibrium 
position,  , and the other being the "charge flux" corresponding to 
charge migration as the chemical bond involving the  atom has been 
distorted. The sum over all atoms, A, implies there is electronic density 
deformation involving all the atoms in the molecule. These two terms 
have already been well discussed by Person, Zilles, and other [28-30]. 
The atomic dipole flux can be separated into two parts if the gradient 
of the density matrix and center of charge integrals are taken inside the 
parentheses:

and

the first of the two terms in equation

 involves only the atom for which the APT is being calculated 
because only these depend on . 

Hardware and Software

For calculations a computer models were used: Intel CoreTM i3-
3220 CPU @ 3.3 GHz x 4 processors [31], Memory DDR3 4 GB, HD 
SATA WDC WD7500 AZEK-00RKKA0 750.1 GB and DVD-RAM 
SATA GH24NS9 ATAPI, Graphics Intel Ivy Bridge [32]. 

For calculations of computational dynamics, the Ubuntu Linux 
version 16.10 system was used [33] and the software used for the 
molecular dynamics was GAMESS [16,34].

Results and discussion
The Figure 2 show on cell structure of a protonated rhodochrosite 

crystal of structure Stoichiometric is CH19Mn6O8, obtained after 
molecular dynamics via unrestricted Hartree-Fock method, in basis set 
CEP-4G, CEP-31G and CEP-121G [35-96].

The Figures 3 (A-D) show the normalized absorption spectrum as a 
function of the vibrational frequencies of the protonated rhodochrosite 
crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-
121G.
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Figure 2. Cell structure of a protonated rhodochrosite crystal. Represented in red the 
oxygen; silver in color Manganese; in gray color Hydrogen; in light see green color the 
Carbon. Stoichiometry:   CMn6O8. Stoichiometry protonated: CH19Mn6O8

Figure 3A. Absorbance spectrum plot as a function of vibrational frequencies of protonated 
rhodochrosite crystal for UHF-CEP-4G basis set

Figure 3B. Absorbance spectrum plot as a function of vibrational frequencies of protonated 
rhodochrosite crystal for UHF-CEP-31G basis set

Figure 3C. Absorbance spectrum plot as a function of vibrational frequencies of protonated 
rhodochrosite crystal for UHF-CEP-121G basis set

Figure 3D. Absorbance spectrum plot as a function of vibrational frequencies of protonated 
rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G

The rhodochrosite crystal unit cell of structure CMn6O8, where 
the load distribution by the molecule was verified in the unrestricted 
Hartree-Fock method, UHF CEP-4G (Effective core potential (ECP) 

minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-
121G (ECP triple-split basis), through the analysis of APT and Mulliken 
loads [97-103].

The rhodochrosite unit cell was protonated, then presented the 
structure CH19Mn6O8 for the study with ab initio methods with +4 
multiplicity. The displacement of charges by the molecule was analyzed 
to verify the site of molecular action.

The load distribution by the protonated crystal is evaluated in Table 
(1), and its vibrational frequencies in Table 2.

The largest load variation in the APT and Mulliken methods 
were obtained in the CEP-121G base set, with δ = 2.922 e δ = 2.650, 
respectively, being δAPT > δMulliken , in all sets of calculated bases, Table 1.

The Table 2 show the maximum absorbance peaks in the CEP-4G, 
CEP-31G and CEP-121G set basis are present at the frequencies 2172.23 
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ν (cm-1) I (%) ν (cm-1) I (%) ν (cm-1) I (%) ν (cm-1) I (%)
CEP-4G 2172.23 64.9904 2043.25 51.7671 2193.1 41.6608 2242.97 36.4643

CEP-31G 2231.4 45.3589 1891.26 41.6207 2027.77 40.3978 1926.32 38.0064
CEP-121G 2177.24 100 2261.98 87.0553 1947.03 83.1151 1778.57 51.6624

ν = Frequency (cm-1); I = Normalized Intensity (%)

Table 2. Peaks maximum absorption intensity by the frequency given. Absorbance frequency as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-4G 
basis set, UHF-CEP-31G and UHF-CEP-121G

Basis Sets Mulliken APT
Charge* δ Charge* δ

CEP-4G -1.064 +1.064 2.128 -1.366 +1.366 2.732
CEP-31G -1.034 +1.034 2.068 -1.362 +1.362 2.724
CEP-121G -1.325 +1.325 2.650 -1.461 +1.461 2.922

*±1,602 176 634 × 10−19 C (Coulomb)

Table 1. Load shifting on given basis sets of the Mulliken and APT method

Figure 4. UHF-CEP-4G; UHF-CEP-31G and UHF-CEP-121G for APT and Mulliken, for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G
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cm-1, with a normalized intensity of 65%; 2231.4 cm-1 and 45.4%; and 
2177.24 cm-1 and 100%, respectively.

Analysis
The Mulliken load method in the UHF-CEP-4G base set; UHF-CEP-

31G and UHF-CEP-121G are sufficient to show that the sites of action 
of the rhodochrosite crystal structure are found in three Oxygen-linked 
Manganese atoms, which are attached to the central Carbon atom, as 
well as these. Oxygen atoms and the central carbon. 

These Manganese atoms show a slight negative to neutral load shift 
in the CEP-4G set basis, neutral to positive in the CEP-31G and CEP-
121G set basis at the Mulliken charges, Figure 4.

The charge displacement is strong in the oxygen atoms, especially 
those near the central carbon, with negative load in all set basis studied, 
both in the APT and Mulliken charges.

The central carbon atom on all set basis is positively charged in both 
APT and Mulliken load, except Milliken in CEP-31G, which is neutral.

As might be expected from the charges by APT, the strong positive 
load manganese atoms, the strong negative load oxygen, the positively 
charged carbon atom. The manganese atom farthest from the carbon 
atom has a slight positive to neutral load shift.

The Mulliken load method presents a better result when compared 
to the APT, in the studied set basis, for protonated rhodochrosite 
crystal, with a smaller load variation δ = 2,650 u.a for CEP-121G.

The absorption peaks are in a Gaussian between the frequencies 
1620 cm -1 and 2520 cm -1, Figure 3D.

The largest load variation in the APT and Mulliken methods 
were obtained in the CEP-121G base set, with δ = 2.922 e δ = 2.650, 
respectively, being δAPT > δMulliken , in all sets of calculated basis, Table 1.

Conclusion
The absorption peaks are in a Gaussian between the frequencies 

1620 cm-1 and 2520 cm-1.

The Mulliken load method presents a better result when compared 
to the APT, in the studied set basis, for protonated rhodochrosite 
crystal, with a smaller load variation δ = 2,650 u.a for CEP-121G.

The maximum absorbance peaks in the CEP-4G, CEP-31G and 
CEP-121G set basis are present at the frequencies 2172.23 cm-1, with 
a normalized intensity of 0.65, 2231.4 cm-1 and 0.454 and 2177.24 cm-1 
and 1.0 respectively.

Later studies could check the advantages and disadvantages 
of rhodochrosite in the treatment of cancer through synchrotron 
radiation, such as one oscillator crystal.
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