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Introduction
Mandibular retrognathism can occur due to either a developmen-

tal abnormality or an unfavorable positioning of the developing jaws 
[1,2]. Mandibular retrognathism can lead to several problems, such as 
respiratory difficulties, temporomandibular joint disorders, reduced 
chewing function, and aesthetic issues related to maxillofacial deform-
ities [3-6]. Currently, orthodontic treatment for skeletal mandibular 
retroversion in children during the growth and development period is 
generally based on the use of functional orthognathic appliances to pro-
mote anterior mandibular growth.

The most common method for orthodontic treatment of skeletal 
mandibular retrognathism in growing children is to promote forward 
growth of the mandible using functional orthognathic appliances, such 
as activator and bionator [7-9]. However, the long-term effect of this 
type of orthognathic treatment is not stable, and a new treatment meth-
od with high predictability is desired [10]. 

We have recently reported that myo-inositol supplementation for 
the mouse diet can promote mandibular-specific growth [11]. In the 
report, we discovered that Pik3cd, an enzyme involved in myo-inositol 
metabolism, is specifically up-regulated in mandibular chondylar carti-
lage, and myo-inositol supplementation augments cell proliferation and 
chondrocytic differentiation. However, details of chondrocytic differen-
tiation induced by myo-inositol is still remain unclear [12].

Functions of Pik3cd in cells were extensively explored. Constitutive 
PI3K activation is the result of autocrine IGF-1/IGF-1R signaling in 

70% of acute myeloid leukemia [13]. PI3K pathway defects lead to im-
munodeficiency and immune dysregulation [14]. Furthermore, Pik3cd 
plays a role in maintaining favorable immune responses [15,16].

Chondrocytic differentiation is regulated by several axes, such as 
transcription factor SOX9, hedgehog signaling, Fibroblast growth fac-
tors, cell-matrix interactions including N-cadherin and integrins, and 
epigenetic mechanisms [17-23]. To our knowledge, there is no report 
on the relationship between Pik3cd and chondrocytic differentiation.

In this report, we explored the phenomenon of myo-inositol-induced 
chondrocytic differentiation using mouse chondrocytic cell-line, ATDC5.

Materials and methods
Chemicals 

Myo-inositol was purchased from Wako Pure Chemical Industries, 
Ltd., (Osaka, Japan).

Cells and Cell Culture 

The chondrocyte cell line, ATDC5 was obtained from Riken Bi-
oresource Center (Tsukuba, Japan). ATDC5 was cultured in DMEM/
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Ham's F-12 with L-Gln and Sodium Pyruvate (FUJIFILM WakoChemi-
cals, Tokyo, Japan), without HEPES, containing 10% fetal bovine serum 
and supplemented with antibiotics (100 U/mL of penicillin and 100 µg/
mL of streptomycin).

Cells were cultured at 37°C in a 5% CO2 incubator. Cells were cul-
tured in the presence or absence of myo-inositol (100 µM). In some 
experiments, cells were stimulated with BMP4 (100 ng/mL: FUJIFILM 
Wako Chemicals, Tokyo, Japan) to induce chondrocytic differentiation.

RNA extraction and Reverse Transcription (RT) 

RNA from cultured cells were extracted using the RNeasy Mini 
Kit (Qiagen, Hilden, Germany) according to the manufacturer's in-
structions. After measuring the RNA concentration, equal amounts of 
RNA (500 ng) were reverse transcribed using iScript cDNA Supermix 
(Bio-Rad Laboratories, Hercules, CA). cDNA was diluted five-fold with 
Tris-EDTA buffer and used for subsequent Real-time RT-PCR analysis.

Real-time RT-PCR analysis 

Real-time RT-PCR was performed using SsoFast EvaGreen-Super-
mix (Bio-Rad, Laboratories) on a CFX connect Real-Time PCR System 
(Bio-Rad Laboratories). Fold changes of genes of interest were calcu-
lated by using the -ΔΔCT method with ribosomal protein S18 (RPS18) 
as a reference gene. Primer sequences for mouse collagen type II (Col 
II), mouse collagen type X (Col X), SOX9, and RPS18 were as follows:

Col II:

(Forward) 5′-GGGAATGTCCTCTGCGATGAC-3’,

(Reverse) 5′-GAAGGGGATCTCGGGGTTG-3’

Col X:

(Forward) 5′-TTCTGCTGCTAATGTTCTTGACC-3’,

(Reverse) 5′-GGGATGAAGTATTGTGTCTTGGG-3’

SOX9:

(Forward) 5′-AGTACCCGCATCTGCACAAC-3’,

(Forward) 5′-ACGAAGGGTCTCTTCTCGCT-3’

RPS18:

(Forward) 5′-AGTTCCAGCACATTTTGCGAG-3’,

(Reverse) 5′-TCATCCTCCGTGAGTTCTCCA-3’

Immunofluorescent staining

Cells were seeded into 6-well plates containing glass coverslips 
(Matsunami Glass Co.,Ltd, Osaka, Japan). After cells got confluent, cul-
ture medium was changed to the following condition; control medium, 
medium containing myo-inositol (final 100 µM), medium containing 
BMP4 (100 ng/mL: FUJIFILM WakoChemicals, Tokyo, Japan), and 
further cultured for 7 days. Cells were then fixed with ice-cold meth-
anol for 15 minutes, were washed with PBS-T at 3 times, and were 
blocked in 10% BSA in PBS for 1 hour at room temperature. Cells were 
then incubated with anti-Col10A1 Ab (1:100) (Cloud-clone corp. Wu-
han, China) in Can get signal solution (Toyobo, Osaka, Japan), washed 
with PBS-T, incubated with Alexa Fluor 488–conjugated secondary 
Ab (1:1000) (Abcam, Cambridge, MA), and washed again with PBS-T. 
Nuclei were stained with DAPI (1µg/ml)(Sigma-Aldrich Co., St Louis, 
MO)) and fluorescent photographs were taken with a BZ-9000 micro-
scope (Keyence, Osaka, Japan), with same exposure condition.

The percent of green fluorescence positive area per field were calcu-
lated by using ImageJ software (National Institutes of Health, Bethesda, 
MD) from at least 19 images in each culture condition.

Statistical analysis

All data are presented as the mean ± standard error. Multiple com-
parisons were performed using Tukey’s test. A p < 0.05 was considered 
statistically significant.

Results
Markers for chondrocytic differentiation were augmented by 
myo-inositol in mRNA level

Realtime RT-PCR analysis revealed that Myo-inositol augmented 
the expression of markers for chondrocytic differentiation at mRNA 
level (Figure 1). Among them, Sox9, which is known as a critical factor 
for chondrocyte differentiation, was augmented by myo-inositol at sim-
ilar extent to BMP4 stimulation at day-3 [24,25]. Col II expression at 
day-3 was augmented by myo-inositol, though the induction was high-
er in the BMP4 treatment. Interestingly, expression of Col X, which is 
known as terminal differentiation marker for chondrocytic differenti-
ation, was stable at day-3, though the expression was significantly in-
duced at day-5 [26].

These data suggest that myo-inositol augment the mRNA expres-
sion of chondrocytic differentiation markers similar to BMP4.

Myo-inositol augmented Col X protein expression

Then we examined protein level expression of Col X (Figure 2). The 
expression of Col X at day 7 was increased by BMP4 (Figure 2c). Not 
only BMP4, but also myo-inositol augmented Col X expression (Figure 
2b). Percent of immuno-positive area in the field were calculated using 
19 to 22 photographs in each group (Figure 2d). Compared to control, 
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Figure 1. Realtime RT-PCR for chondrocytic differentiation markers
Gene expressions of sox9 (a), Col II (b), and Col X (c) at day 3, and Col X expression at 

day 5 (d) were shown. *: p < 0.05 versus control. †: p < 0.05 between groups.
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myo-inositol and BMP4 augmented Col X positive area. Col X positive 
area in BMP4 group were statistically higher than that in myo-inositol 
group.

These data suggest that myo-inositol augment protein level expres-
sion of chondrocytic differentiation markers similar to BMP4.

Discussion
In this study, we firstly discovered that myo-inositol augments 

chondrocytic differentiation in ATDC5. Our results suggest that 
myo-inositol would be beneficial supplement for not only augmenta-
tion of mandibular growth, but also for maintaining favorable cartilage 
homeostasis.

We used ATDC5 as pre-chondrocyte in this experiments, because 
ATDC5 expresses Pik3CD similar to mandibular condylar cartilage 
[11]. In the previous report, we demonstrated that Pik3CD-express-
ing cells such as mandibular condylar cartilage and ATDC5 exhibited 
augmentation of cell proliferation in the Pik3CD-dependent manner 
revealed by the use of Pik3CD inhibitor. Pik3cd, which is one of the 
phosphatidylinositol 3-kinase, consists of family, and these family 
enzymes act as key enzymes to produce phosphatidylinositol, a sec-
ond messenger for intracellular signaling, including cell proliferation 
[12,27]. Taken these informations together with our results, myo-inosi-
tol would induce intracellular signaling via Pik3cd, and augment chon-
drocytic differentiation. Therefore, another cartilage that express less 
Pik3CD would be little response to myo-inositol. Further experiments 
are necessary to clarify the issue. 

Myo-inositol augmented Sox9, which is known as a critical factor 
for chondrocyte differentiation, at similar extent to BMP4 stimulation 
[28,29]. This indicates myo-inositol would be beneficial for cartilage 
differentiation. Indeed, our results clearly demonstrated that another 
chondrocyte differentiation markers were also augmented by myo-
inositol. Chondrocytic differentiation is regulated by several axes. 
Transcription factor, SOX9 is thought to be the master regulator for 
chondrogenesis [17]. Hedgehog signaling is reported to play a key role 
in cartilage formation [18]. Exploration for genetic mutation revealed 

that fibroblast growth factors play a role in cartilage formation [19]. 
On the other hand, cell microenvironment by cell-matrix interactions 
including N-cadherin and integrins  regulate cartilage formation [20,21]. 
Though our data clearly demonstrated that myo-inositol augmented 
chondrocytic differentiation, the mechanism how myo-inositol interact 
with these regulatory axes in chondrocytic differentiation still remain 
undiscovered. Further experiments are also necessary to clarify the 
issue.

In this study, we firstly discovered that myo-inositol augments 
chondrocytic differentiation in ATDC5. Our results suggest that myo-
inositol would be beneficial supplement for not only augmentation 
of mandibular growth, but also for maintaining favorable cartilage 
homeostasis.
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Figure 2. Immunofluorescent analysis for Col X
Representative photographs of control (a), myo-inositol (b), and BMP4 (c) groups were 

shown.
Percent of positive area from 19 to 22 photographs in each group were shown. *: p < 0.05 

versus control. †: p < 0.05 between groups.
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