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Simulating the growth of hepatic metastases from 
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Abstract
The mathematical modeling of tumors has potential to contribute to individualized therapy for a wide range of malignancies. There have been many approaches to 
this complex subject over the last 50 years or more. The current study is an attempt to adapt a model, originally developed for neuro-oncology, to the understanding of 
hepatic metastases from pancreatic carcinoma. The Diffusion-Proliferation (DP) model uses the sum of a diffusion term and a proliferation term to calculate changes 
in tumor cell concentration over time. The model was adapted directly from previous investigators who have used it to study brain tumors. The model is based on 
two parameters, a diffusion parameter (Di) and a proliferation index (p). LabVIEW is a widely used software package, which enables simulation of physical systems, 
especially in engineering applications, and has been applied to the diagnosis and treatment of malignancies. This is the first study to use LabVIEW for the simulation 
of tumor growth. The simulation allows direct entry of the two parameters, D and p, with the resulting tumor growth curve appearing as a graph. The user has a rapid 
graphical understanding of the impact of the two parameters, D and p, on tumor growth. The next step in the development of this model will be to use patient-specific 
data to understand tumor growth and calculate survival based on the parameters D and p. 
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Introduction
The incidence of adenocarcinoma of the pancreas is stable in many 

countries although it is increasing in some developed countries where 
it was formerly low. This dreaded disease remains one of the most 
difficult malignancies to treat and cure. It is often diagnosed in late 
stage for a wide variety of reasons, and overall about 95% of patients 
die of their disease within five years. The global incidence is about 
8/100,000 people and the incidence in the USA is about 13/100,000. 
Incidence rates vary about five to seven-fold from countries with the 
lowest to highest incidences [1]. 

One of the latest approaches to solving problems in biomedicine 
is to apply the methods of other established investigative fields. This 
concept has recently led to the development of the entire field of 
Computational Oncology [2]. The idea is to leverage the physical 
sciences and mathematics to solve problems in oncology, by using a 
sound mathematical foundation for approaches to oncologic problems. 
This has led to several approaches to tumor modeling, including 
mechanistic models, cellular models and descriptive models. 

Mechanistic tumor models
Mechanistic models have been developed for pancreatic cancer 

[3]. Investigators have developed a complex model based on signaling 
pathways in cancer. Specifically, they deal with the pathways for 
apoptosis, cell cycle arrest and proliferation. This impressive model 
includes several major signaling pathways, including the Hedgehog, 
WNT, KRAS, RB-E2F, NFkB, p53, TGF-ß, and apoptosis pathways. 
The signaling pathways are translated to a Boolean network model, 
designed with many nodes. The nature of the interactions among the 
nodes is based on studies of cell function from the laboratory. Each 
node is a protein or lipid in the signaling pathway. Symbolic Model 
Checking is then used to verify that the pancreatic cancer cell model 
satisfies temporal logic properties. The effect of each of the pathways 

coded can then be evaluated, leading cells to apoptosis, proliferation 
or cell cycle arrest. This is a very sophisticated model of a single cell, 
based on known pathways that allows investigators to study the effects 
of specific signaling pathways on cell activity. It is hoped that this 
cellular-level insight will be translated into clinically useful therapeutic 
approaches.

Cellular growth models
While mechanistic models as described above, are attempting to 

“construct” in silico tumors by modeling individual specific cellular 
processes, the descriptive models described below are simulating the 
clinically observed growth of tumors and using that to predict clinical 
outcomes. Between these two approaches, lie a group of models which 
we refer to as “cellular models” where the growth of groups of cells is 
described mathematically [4-6]. The importance of angiogenesis and 
the blood supply to tumors is a key feature of some of these models. 
Shirinfard and colleagues developed a three-dimensional simulation of 
vascular tumor growth which builds a lattice of vessels to which tumor 
cells are added [4]. Cells proliferate and then respond to the resulting 
hypoxia as demand outstrips supply. The tumor cells go through three 
phases of growth patterns. This innovative model allows investigators 
to study how tumor induced angiogenesis affects the growth of tumors. 
Another cellular model focuses on heterogeneous cellular interactions 
on tumor progression using a web-based visualization tool [5]. This 
system uses the Cellular Potts Model, which is based on individual cells 
modeling on the tissue level. More recently, investigators are using 
non-linear modeling to study the effects of morphology instabilities on 
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both avascular and vascular solid tumor growth [6]. These investigators 
use a boundary-integral approach to demonstrate that morphologic 
instability is a means for tumor invasion. All of these approaches have the 
potential to further our understanding of factors affecting tumor growth. 

Descriptive tumor models
The last type of tumor model used is a descriptive tumor model, 

which is based on patient-based clinical data rather than cellular 
pathways elucidated in the laboratory. Descriptive tumor models have 
been used with some success in the field of neuro-oncology, and led to 
the new discipline of Mathematical Neuro-Oncology [7]. This field uses 
descriptive tumor models to predict and quantify response to therapy. 
Advocates of this approach refer to this as precision medicine that uses 
patient-specific data to tailor therapy. The application of descriptive 
models to carcinoma of the pancreas is a relatively new approach [8].

Cellular diffusion
Tumor growth can be from cell proliferation or from diffusion of 

cells into the parenchyma. The first half of the model is based on cellular 
diffusion, using Fick’s first law of diffusion. Diffusion is the net flux of 
particles down a concentration gradient due to random movement. For 
a concentration, c, the diffusion flux, J, is defined as:

where x is the position and D is the diffusion coefficient. The diffusion 
coefficient is the slope of the line. When D is large, the same gradient 
causes greater diffusion. In 2 or more dimensions, we use the gradient:

In anisotropic media, Fick’s first law uses the tensor Dij, and is 
expressed as the product of a vector and a tensor:

Fick’s second law (in one dimension) states that: 

which predicts how diffusion causes the concentration over time. We 
can now combine these to obtain a diffusion equation: 

Mathematically, this is the divergence of a gradient, which known 
as the Laplacian. The Laplacian operator is used to generalize to more 
than one dimension, and when operating on a scalar field yields a 
scalar, the Laplacian operating on a vector yields a vector and on a 
tensor, yields a tensor. The Laplacian is written as:

In the diffusion model, the Laplacian is used to operate on a scalar 
field, and the result is a scalar, which describes the concavity of the 
scalar field. The diffusion component is written as:

Here, Di is a constant, the diffusion coefficient. In fact, Di is a constant 
only for dilute solutions. Thus, this is one of the approximations in 
this model of cellular diffusion in a solid organ. Fick diffusion is based 

on random molecular motion, and it is difficult to mathematically 
estimate how much this will vary from cell diffusion in a solid organ. 
Nonetheless, it is a reasonable starting point. 

Cell proliferation
Modeling cell proliferation is most simply carried out with an 

exponential model: 

where N0 is some initial condition and λ is a coefficient of growth. One 
of the problems with this simple model is that it does not reflect the fact 
that tumor growth is not constant, but slows down later in its growth 
phase.

A commonly used model for many years is the Gompertz model, 
which describes “Gomepertzian” tumor growth. The Gompertz model 
was developed in the early 1900s for insurance mortality statistics 
and has been applied to mobile phone uptake, population growth, 
finance as well as tumor growth. Application of the Gompertz model 
to tumor growth was first described by Laird [9] in the 1960s. The basic 
Gompertz model is

The Gompertz model accounts for the fact that tumor growth is not 
constant over time, but slows down toward the end of the time period 
tmax. A more complete expression of the Gompertz model is:

The developers of the Proliferation-Invasion model, from which 
the DP model is directly derived, use a different approach for the 
proliferation term [7]. 

The diffusion-proliferation model
Investigators have developed a model based on the two processes 

of diffusion and proliferation. This mathematical model defines the 
rate of change of tumor cell density as equal to the diffusion of tumor 
cells out into the tissue plus the net proliferation of tumor cells [7]. The 
model was fully developed for neuro-oncology, and is referred to as 
the Proliferation-Invasion model. The early iteration of this model is 
shown here [10]:

Where c is the cell concentration at time t. The first term is the 
divergence of diffusion and the second term is the proliferation 
term. This form of the model was used in early work, but as with the 
exponential model described above, this model does not account for 
slowed tumor growth later in time. Therefore, the proliferation term 
was then modified to:

In this term, the use of 

assures that as the cell concentration increases to a maximum value 
(K), the growth accelerates, and then decreases, which is consistent 
with tumor growth.
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effect of drug administration and tumor resection on the number of 
cells in each group, which can then be used to predict survival. This 
model predicts that tumor resection effectively prolongs survival when 
the tumor is large. The effect of the various parameters they use on 
metastatic rate, timing of the occurrence of metastases and growth of 
metastases can be demonstrated with this sophisticated model. This is 
the beginning of detailed descriptive mathematical modeling of tumor 
growth that can be correlated with a patient’s clinical findings. 

These same investigators then applied their descriptive tumor 
model to patients with adenocarcinoma of the pancreas [13]. In this 
study, they used data from 228 patients with adenocarcinoma of the 
pancreas and evaluated growth kinetics. The strength of this study in 
part comes from their use of extensive clinical data from 101 patients 
who underwent autopsy, and 127 patients treated with curative surgical 
resection followed by adjuvant therapy. Overall survival in the autopsy 
group was a median of 11.4mo and 21.0mo in the adjuvant group. The 
tumor kinetic data was developed using their model with data from the 
autopsy group and then validated using data from the adjuvant group. 

The investigators review findings which support the notion that 
metastasis is a late event in the clonal evolution of pancreatic cancer 
[13]. By using data from patients who died of pancreatic cancer, with 
tumors measured at multiple time points, the study shows that an 
exponential growth model more accurately fits (median R2=0.63) the 
clinical growth pattern than a linear growth model. The model starts 
with a single cell that is not able to metastasize (type-0 cell), which the 
multiplies exponentially and gains the ability to metastasize (type-2 
cell). They assume that a single genetic alteration is sufficient to confer 
metastatic ability to pancreatic cancer cells. These cells then metastasize 
at a certain rate at distant sites. The total number of cells is designated 
as M1. The mathematical model then allows four possible options at 
this point including no treatment, surgical resection of the primary 
tumor, systemic therapy, or surgery plus systemic therapy. The authors 
studied tumor size and growth kinetics and found that a consideration 
of both parameters offers an opportunity to optimize the timing of 
therapy. This results of this study using a complex mathematical model 
supports the notion that most patients harbor metastatic disease at the 
time of diagnosis [13]. This may not be a surprise to clinicians who 
treat this disease on a regular basis, but the fact that the outcome of 
the model predicts what we know clinically is extremely promising 
for future development of more sophisticated computational models. 
The strength of this approach is that it is based on data derived from 
large series of patients. The greatest implication of this model is that it 
predicts optimal timing and type of intervention impacts survival [13].

LabView in cancer research
LabVIEW (2017 version, National Instruments, Austin TX) has 

been used in oncology, although it is much more widely known for 
its engineering and education applications. In one novel application, 
the image processing capabilities of LabVIEW were used to analyze 
cells from the breast, and then determine whether the cells have a 
benign or malignant phenotype [14]. The capabilities of LabVIEW are 
well matched to this task. LabVIEW has also been used to optimize 
treatment of cancer. In a system to follow eye-movement in the 
treatment of retro-orbital tumors using proton therapy, LabVIEW was 
used to control the administration of the treatment beam [15]. 

LabView simulation of tumor growth using the DP 
model

Having specified the DP model using the equation above, the 
LabVIEW simulation was then developed. The current version of 

We will formulate the model slightly differently in the diffusion 
term, and shall refer to it as the Diffusion-Proliferation (DP model). In 
mathematical terms, it is stated as:

Rate of change in        Diffusion of             Proliferation of
tumor cell density       tumor cells              tumor cells
over time  

This is a partial differential equation with two parameters: net rate 
of migration (D) and proliferation ( ), both of which are calculated in 
a patient-specific manner using clinical imaging [7]. From the point of 
view of modeling, the DP model is based on several approximations, 
especially in the diffusion term since the Fick equation is based on 
random molecular motion in a dilute solution. This may be a target for 
refinement in the future. 

The success of the DP model is well documented in the modeling 
of gliomas. The model was used to simulate surgical resection for 70 
patients with glioblastoma and predicted the survival in this group [7]. 
In addition to predicting tumor growth the PI model has been used 
to identify patients who might respond to various surgical strategies, 
predict response to radiation therapy and to connect clinical imaging 
features and genetic information [11]. While the clinical behavior 
of glioblastoma is not the same as adenocarcinoma of the pancreas, 
computational oncology may offer insights into various therapeutic 
approaches for patients with adenocarcinoma of the pancreas [8]. 

One consequence of this model is that the profile of cell 
concentration depends on the ratio of p to D. If we vary p and D, while 
keeping the p/D ratio the same, then the geometry of the curves for 
growth and diffusion remain the same but the time scale changes [10]. 
This explains the need for studying tumor growth over time, since 
two tumors could have the same p/D ratio at one point in time, but 
have very different growth characteristics depending on the particular 
values. For a given value of D and p, using Fisher’s approximation. 
The effects of D and p on the concentration of tumor cells over time is 
discussed below in relation to the LabVIEW simulation system, which 
graphically displays the results.

The velocity of tumor growth is easily measured from two CT scans 
at different times and is related to D and p by [10]:

This, of course, does not allow the calculation of D and p 
individually, which is carried out by other means.

Other models of carcinoma of the pancreas
Haeno and Michor [12] developed a descriptive model of the 

growth of tumors, which begins with consideration of tumor cells in 
three groups, type-0 cells which reside in the primary tumor and are 
not yet able to metastasize, type-1 cells which can metastasize and type-
2 cells which have metastasized and form new lesions [12]. They used 
this model to derive several analytical approximations, including: (i) 
the probability of having at least one metastatic site at diagnosis and at 
autopsy; (ii) the expected number of metastatic sites at diagnosis and 
at autopsy; and (iii) the expected total number of cells in all metastatic 
sites at diagnosis and at autopsy [12]. By considering the cells of a tumor 
in these three groups and having analytic approximations to relate the 
size of each group, they can study the effects of various changes on the 
overall cell population. This model also allows the calculation of the 
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the simulator represents a proof of concept and further development 
is underway to include actual patient data so that we can verify the 
model as a predictor survival. At present, the simulator has software 
to calculate the diffusion and proliferation terms which are then 
integrated over time. The user of the simulator can use simple dials to 
set the values of the Diffusion index (D) and the Proliferation Index (P). 
The effect on overall cell concentration, found by integrating the dc/dt 
term is shown graphically. In Figure 1, the ratio of p/D is equal to 0.559, 
displayed on the front panel. This is a low ratio, and the configuration 
of the curve is very similar to that described previously (10, Figure 1). 
Once we increase the p/D ratio, as shown in Figure 2, to 16.9, the shape 
of the curve changes dramatically, as described (10, Figure 1). This 
shows that the LabVIEW implementation of the simulator is consistent 
with previous results.

The next step with the simulator will be to use patient survival data 
and tumor growth velocity to calibrate the values of p and D, so that the 
model can be tested to predict survival. We know that the values of p 
and D vary widely among patients with glioblastomas [16]. We suspect 
similar variation in hepatic metastases, but this will be important to 
evaluate in detail. This work is currently in progress. 

Conclusions and next steps
The application of analytic techniques from the physical sciences and 

mathematics to the problems of clinical oncology has just begun. Data 
based on the mathematical modeling of pancreatic cancer is enticing, 
and may offer important insights into optimal clinical management. 
Success in this burgeoning field will require the close cooperation of 
physical scientists and seasoned clinicians in the coming years. 

Figure 1. Cell concentration (y-axis) over time (x-axis) with a low p/D ratio. 

Figure 2. Cell concentration (y-axis) over time (x-axis) with a high p/D ratio. In contrast to Figure 1, as p (proliferation index) gets large relative to D, the tumor growth rate increases greatly. 
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