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Introduction
In spite of the large arsenal of antibiotherapies that have help 

humanities fighting bacterial infections, we are still facing diseases, 
hospitalization, and death caused by pathogenic agents [1-8]. The 
advent of the first sulfa drugs in the mid-thirties has launched almost a 
century of race toward the discoveries of new therapeutic agents by the 
pharmaceutical industries. The development of the Gram +ve linezolid 
in 2000 as the first family members of oxazolidinones as well as the 
Gram-negative lipopeptide antibiotic daptomycin, first discovered 
by Eli Lilly in 1980 but commercialized in the US in 2003 (23 years 
gap) have successfully lifted the long innovation gap in the medicinal 
chemistry era (Figure 1). Ceftaroline, a member of the fifth-generation 
cephalosporins discovered in 2010 is known to be particularly active 
against methicillin resistant Staphylococcus aureus (SARM), thus 
marking the beginning of alternative weapons against this particularly 
resilient infectious agent.

The advent of medicinal chemistry has allowed the relatively fast 
discoveries of diverse families of antibiotics working under a wide 
range of bactericidal or bacteriostatic mechanisms. Unfortunately, 
bacteria have similarly developed a plethora of defense mechanisms 
that include: (a) active efflux and sequestration of antibiotics by protein 
binding; (b) deactivation by enzymatic modification; (c) modification 
of antibiotic receptors; (d) metabolic bypass of the inhibited reaction; 
(e) overproduction of the antibiotic targets [9,10].

Since the discoveries of a plethora of therapeutics antibacterial 
agents, working on more or less similar mechanisms, scientists 
developed several additional strategies encompassing alternative 
mechanisms (Table 1). They ranged from cell wall destructions through 
polycationic entities such as polypeptides and nanoparticles [11,12]; 
bacterial starving by blocking nutrients input [13]; blocking genes and 
proteins expressions through siRNA [14]; triggering immune responses 
by vaccines directed against cell wall components such as capsular 
polysaccharides, etc. [15,16]. This last approach has been particularly 
successful in eradicating bacterial infections caused by Streptococcus 
pneumoniae, Neisseria meningitidis, Haemophilus influenza type b and 
so on [17-19].

Of particular interest was the discovery that numerous bacteria 
express carbohydrate-binding proteins called lectins as virulence 
factors [31]. In these cases, the bacterial infection is initiated by a 
carbohydrate-protein recognition process (adhesion) from which the 
lectins bind to glycoconjugate receptors (glycoproteins, glycolipids) on 
the host cells (Figure 2). The ensuing steps include the release of deadly 

toxins and biofilm formation. Amongst these, Pseudomonas aeruginosa, 
uropathogenic E. coli, several Shigella species, and Burkholderia 
cenocepacia are representative examples. The case of uropathogenic 
E. coli infections (UPECs) is particularly well documented because 
the lectins responsible for the host cell adhesion are known and their 
structures fully characterized by X-ray crystallography [32]. The E. 

Strategy Therapeutic agent Action mechanism References

1 Nanoparticles Blocking biofilm 
formation 12

2 Quoring sensing
Blocking bacterial 

communication and 
biofilms

20

3 Siderophore Enzyme co-factors 21
4 Polycationic peptides Membrane disruption 11
5 Polycationic NPs Membrane disruption 20
6 Phytochemicals Varied 22

7 Repurposing anticancer 
drugs Varied 23

8 Vaccines Antibody-directed 
bacterial antigens 15-19

9 Antisense 
oligonucleotides

Inhibition of gene 
expression 14

10 Peptide Nucleic Acids 
(PNA)

Inhibition of gene 
expression 24

11 Transition metals (ex. 
Silver cations)

Inner membrane 
disruption 13,25

12 Innate immunity Macrophage stimulation 
through TLRs 26

13 Adaptive immunity Antibody-antibiotic 
conjugates 27

14 Phage display Bacterial membrane 
lysis 28

15 Carbohydrate analogs
Inhibition of 

carbohydrate processing 
enzymes

29

16 Carbohydrates Inhibition of adhesion 30

17 Pilicides Inhibition of pili 
formation 38

Table 1. List of alternative therapies against bacterial infections and their mechanism of 
action
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Figure 1. Development and bacterial resistance pattern of current antibiotics [9] 

Figure 2. Blocking bacterial adhesion by carbohydrate anti-adhesives [33a]

coli FimH lectin has led to intensive medicinal chemistry efforts that 
ultimately allowed the discovery of small molecule inhibitors that 
recently successfully passed clinical Phase 1 [33,34].

Actually, the proof of principle that clearly demonstrated the first 
examples of inhibition of bacterial adhesion by carbohydrates was 
obtained through the pioneering activities of Sharon et al. [35]. For 
instance, recent investigations showed the direct consequences of 
exposing carbohydrate ligands such as carbohydrate additives and α-D-
mannopyranoside antagonists between uropathogenic E. coli CFT073 

bound to human 5637 bladder epithelial cells in vitro (Figure 3) [36-38]. 
The binding of green fluorescent protein-labelled E. coli strain (CFT073-
GFP) could be efficiently inhibited in the presence of low concentration 
of the sugar as shown by fluorescence microscopy. In addition, there 
are growing demonstrations that the effect of mannopyranoside 
antagonists can alter the binding of various uropathogenic E. coli strains 
in microarray settings including human tissues. Hence, the therapeutic 
value of identifying potent sugar antagonists against adherent invasive 
E. coli strains represents an important goal in our arsenal of new drug 
development.
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