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Abstract
The mudflat bivalve Donax faba, locally known as Lala, were collected from the intertidal area from Pasir Panjang, Negeri Sembilan, Malaysia. The collected bivalve 
were separated into five different tissue parts (remainder, muscle, foot, siphon, mantle, and gill) and together with their shells, were analyzed for the content of Cd, 
Cu, Ni, Fe, Pb and Zn. From this study, the Cu concentrations in the soft tissues of the bivalve are in the decreasing order of gills>remainder>mantle for all the three 
sampling sites. For Zn, the highest concentrations of this metal were recorded in mantle and gill of the species. Non-essential metals, such as Cd, Pb, and Ni were 
found to be high accumulated in the shells. However, no clear pattern of Fe accumulation was observed in all the tissues in this study. For health risk assessment, all 
the Target Hazard Quotient (THQ) values for both Average Consumer (AC) and High Consumer (HC) for all six metals in this study were below one except for 
Cd for HC. Therefore, the bivalve found in Pasir Panjang is safe to be consumed as according to the THQ values (<1), but the consumption should be in moderation 
as the THQ values were above one for Cd HC.
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Introduction
An excessive amount of heavy metals content in global mangrove 

sediments has long been recorded, which is a devastating repercussion 
from anthropogenic activities [1-4]. Heavy metals are classified as one 
of the major pollutants threatening the well-being of the ecosystem due 
to their detrimental properties [4,5]. Due to rapid industrialization and 
urbanization, the coastal ecosystem, such as intertidal mangrove areas 
of tropical and subtropical countries, are susceptible to severe heavy 
metal pollution [6]. Human activities such as shipping, waste disposal 
are the leading cause of pollution in the mangrove ecosystem [7]. In 
addition to that, mangroves are well known for their ability to retain 
heavy metals owing to the anaerobic and sulphide-rich nature of the 
sediments [1,6,8]. 

Thus, ongoing monitoring of heavy metals pollution should be 
conducted in mangrove areas as this ecosystem is not only the primary 
habitat for various flora and fauna but also serve as a seasonal shelter 
for migratory birds [7]. Apart from that, wetland ecosystems had been 
proven to be an effective mean of industrial, domestic and mining 
waste effluents treatment as the methods of treatments are simple and 
economical [9,10]. 

Numerous reported studies had confirmed the feasibility of 
bivalve as good bio monitors for heavy metals in intertidal areas [11-
17] which is mainly due to the fact that the metal concentrations in 
the soft tissues of bivalves are able to give a clear profile of the heavy 
metals pollution status in the coastal waters [15,16,18]. Their sessile, 
relatively long life span and high tolerances of heavy metals enable them 
to display a time-integrated measurement of metals accumulation in a 

given environment. Therefore, their metal content is a direct reflection 
of the contamination history of the particular environment [19]. 
Since Donax faba is a common food among the locals, it is of utmost 
importance to assure that the safe consumption of this species. Cheng 
and Yap (2015) had reported the Target Hazard Quotient (THQ) of 
the mangrove snails, Nerita lineata, but the information on the safety 
consumption of D. faba in this region is scarce. 

Heavy metals determination with statistical analysis of D. faba has 
been reported by [20] from samples collected in Pasir Panjang, but 
the actual values of the metal concentrations in the different tissues 
of the species were not presented. Thus, this study aims to present the 
concentrations of six metals in D. faba collected from Pasir Panjang in 
2006 and to estimate the human health risk assessment of heavy metals 
from consuming the species. 

Materials and Methods
Preparation and metal extraction

The bivalve D. faba (about 30 individuals) were collected from Pasir 
Panjang (Figure 1) on 28 April 2006. The samples were then dissected 
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into six different tissue parts: remainder, muscle, foot, siphon, mantle, 
and gill. All dissect tissues and shells were dried in the oven (60°C) until 
the constant dry weight was obtained. Dried tissue parts were digested 
in concentrated HNO3 (Analar grade, BDH 69%) by heating them in a 
hot-block digester. The acid-tissues mixture was first heated at 40°C for 
one hour ant then first at a low temperature for 1 hour, followed by full 
digestion at 140°C for at least 3 hours [21]. All tissues were prepared 
with triplicates. The digested sample was topped up with double-
distilled water (DDW) to a volume of 40 mL before filtration. 

Target Hazard Quotient

Total Hazard Quotient values were determined from the formula 
below as proposed by [22] USEPA (2000). As the whole soft tissue data 
were not available in this study, the remainder tissue, which constituted 
the most significant portion of the total soft tissue of the species were 
chosen for THQ determination. The formula accounted for two groups 
of consumers depending on their degree of consumptions, namely 
Average Consumers (AC) and High Consumers (HC). 

THQ= EDI/ ORD---------------(2)

Where:

EDI= (M x C/BW)

C = consumption rate consumption rate (AC = 17.86 and HC = 
35.7 g/d ); M = concentration of metals of sample in this study (mg/kg 
ww); BW = average body weight of an adult (60 kg)

The oral reference dose (ORD)was used in this study to evaluate 
the EDIs of metals in the bivalves. The ORD values (μg/kg/day) used 
in this study were: Cd: 1.00; Cu: 40.0; Ni: 20.0; Fe: 700; and Zn: 300, 
provided by the USEPA's regional screening level [23].

Figure 1. Map showing the sampling sites for Donax faba in Pasir Panjang (P), Peninsular Malaysia

Since RfD for Pb was not available according to the [23], the 
present study employed the ORD as 3.50 μg/kg/day as suggested by 
USEPA (2008).

Results with THQ value > 1 indicate the possibility of health hazard 
based on a lifetime consumption of the metal-contaminated sample in 
the study [24]. 

Metal determination

Analysis of heavy metals was performed using the air-acetylene 
flame atomic absorption spectrophotometer (AAS) Perkin-Elmer 
Model Analyst 800, where data were presented in µg/g dry weight. 
Quality of the analytical method was confirmed by conducting 
metal recovery analyses, and procedural blanks check. The data 
obtained from heavy metals recovery were of satisfaction (80-110%) 
while procedural blanks and standard solutions for all six metals in 
this study were analyzed for every 5-10 samples to ensure accuracy 
of data. 

Results and Discussions
Table 1 shows the condition index and allometric data of D. faba 

collected from Pasir Panjang. Based on Figures 2 and 3 and Table 2, it 
was observed that Cu was accumulated at higher concentrations in the 
gill and remainder as compared to other soft tissues. While the highest 
concentrations of Zn were detected in the gills and mantle, shells, on 
the other hand, accumulated the highest concentrations of Cd, Ni, and 
Pb, which are the non-essential metals. High Fe concentrations were 
recorded in the muscle, gill, and mantle of the bivalve. According to 
[25] preposition on shellfishes, the distribution of metals in the tissues 
of D. faba could be explained based on three main factors. The first 
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Figure 2. Donax faba collected from Pasir Panjang, Negeri Sembilan

Figure 3. Heavy metal concentrations (Cu, Cd. Zn, Pb, Ni, and Fe) in the different soft tissues of Donax faba (La-La) collected from Pasir Panjang, Negeri Sembilan
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Tissues Cu Cd Zn Pb Ni Fe

Shell 9.73-10.0
9.88±0.158

6.77-7.63
7.20±0.429

4.55-4.57
4.56±0.011

5.10-5.43
5.27±0.167

28.3-28.7
28.5±0.194

47.0-81.1
64.1±17.1

Remainder 13.8-16.4
15.1±1.32

2.57-2.91
2.74±0.172

42.2-43.1
42.6±0.446

0.790-1.12
0.954±0.163

2.37-3.03
2.70±0.331

608-767
687±79.6

Mantle 6.76-6.97
6.86±0.103 2.81-3.09 2.95±0.139 44.6-49.1

46.8±2.29
1.37-1.56

1.47±0.099
2.66-3.83

3.25±0.584
244-320
282±37.9

Gill 12.4-13.4
12.9±0.536

3.75-4.10
3.92±0.175

92.2-94.5
93.4±1.16

2.01-2.17
2.09±0.079

4.61-4.91
4.76±0.149

466-473
470±3.81

Siphon 5.31-5.52
5.41±0.103

3.21-3.34
3.28±0.066

41.0-44.6
42.8±1.84

2.21-2.46
2.34±0.121

2.10-2.37
2.24±0.135

248-402
325±77.3

Foot 5.58-6.37
5.98±0.395

3.54-3.83
3.68±0.144

38.1-39.4
38.8±0.661

2.28-2.43
2.36±0.075

1.49-1.67
1.58±0.090

85.3-123
104±18.7

Muscle 4.51-4.92
4.71±0.204

3.39-4.08
3.74±0.346

27.5-29.1
28.3±0.805

2.38-2.63
2.51±0.127

1.59-2.47
2.03±0.444

91.7-127
109±17.6

Table 2. Ranges (and mean ± SE μg/g dw) of heavy metal concentrations (Cu, Cd, Zn, Pb, Ni, and Fe) in the different part of tissues of Donax faba

THQ values Cu Cd Zn Pb Ni Fe
Average consumers (AC) 0.11 0.82 0.04 0.08 0.04 0.29

High consumers (HC) 0.22 1.63 0.08 0.16 0.08 0.58

Table 3. Target hazard quotient values of the six metals (Cu, Cd, Zn, Pb, Ni and Fe) for AC and HC consuming the remainder tissues of Donax faba

Group N Shell lenght, (cm) Shell width, (cm) Shell height, (cm) Soft tissue wet weight, 
(g)

Soft tissue dry weight, 
(g) CI (g/cm3)

1. 10 27.6-33.0
(30.1±0.576)

12.0-15.6
(13.7±0.374)

19.7-22.7
(20.8±0.325)

1.00-1.81
(1.32±0.084)

0.189-0.306
(0.236±0.013)

20.8-36.2
(27.1±1.43)

2. 10 40.8-45.6
(42.5±0.409)

20.2-24.8
(22.4±0.429)

28.7-34.5
(31.3±0.663)

2.68-6.05
(3.77±0.314)

0.572-1.13
(0.753±0.054)

22.1-29.0
(25.0±0.842)

Table 1. Mean values (mean ± standard error) of condition index (CI) and other allometric parameters of Donax faba collected from Pasir Panjang

factor was attributed to the different surrounding contact area of each 
soft tissues differences in the surface of contact of the various soft 
tissues. The second factor involves the variation of affinities towards the 
binding site of metallothionein displayed by each metal in each tissue 
[15,26,27]. In this study, gill of D. faba has the highest concentration 
of Cu and therefore could have the highest affinity towards the metal. 
The last factor revolves around the accumulation and excretion rate of 
the metals differing in each soft tissue. Different rates of accumulation 
and depuration is an implication of metal treatment and regulation by 
the biological system of the species [28]. This is supported by different 
variation of metal concentrations found in the different tissues of D. 
faba in this study. Donax faba, like many other mollusks [15,16,29,30], 
can provide the contamination status and integrated bioavailability 
of metals in coastal waters excelling over seawater and sediments as 
biomonitoring agents [31]. All the THQ values for both AC and HC for 
all six metals in this study were below one except for Cd for HC (Table 
3). These values had indicated that there was no likelihood of adverse 
health effects for all the six metals from consumption of the remaining 
tissues of D. faba for AC and HC, except for Cd of HC. The results of 
safety consumption are somewhat in agreement with those reported by 
[32] for the same metals in this study but in N. lineata. 

Conclusion
From the present study, D. faba exhibited its potential as a good 

biomonitoring agent where different parts of the species are could be a 
reflection of the metals contamination at a particular. It was shown that 
the species could exhibit the bioavailability of Zn in its gills, Cu and 
Fe in the remainder tissues and the non-essential metals (Cd, Ni, and 
Pb) in the shells, from the surrounding of Pasir Panjang. The elevated 
concentrations of the six metals in the samples collected from Pasir 
Panjang denoted the high bioavailabilities these metals in the area. The 
species found in this site are safe to be eaten as according to the THQ 

values (<1), but the consumption should be in moderation as the THQ 
values were above one for HC.
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