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Abstract
Aspirin (Asp) is a member of nonsteroidal anti-inflammation drug and widely used as an analgesic, antipyretic, and anti-inflammation agent. In this investigation, the 
inherent stability, chemical reactivity, and biological properties of Aspirin and its metabolites have been studied. Density functional theory (DFT) with B3LYP/3-
21g has been employed to optimize the structures. Frontier molecular orbital features (HOMO-LUMO gap, hardness, and softness), dipole moment, electrostatic 
potential and thermodynamic properties (electronic energy, enthalpy, Gibb’s free energy) of these metabolites have been investigated. Molecular docking has been 
performed against prostaglandin H2 (PGH2) synthase protein 5F19 to search the binding affinity and mode(s) of all compounds. It is found that, all compounds 
are thermodynamically stable; most of them are chemically more reactive and show better binding affinity than the parent drug. ADMET calculations predict the 
improved pharmacokinetic properties of all metabolites.
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Introduction
Aspirin (Asp) is popularly used as analgesic, anti-pyretic, anti-

inflammatory, and anti-platelet agent [1-4]. Recently, Asp and its 
modified derivatives are using in the treatment of cancer [5-7] stroke 
[8], and cardiovascular diseases [9,10]. It inhibit the prostaglandin 
synthesis by blocking cyclooxygenase [11,12]. It has some common side 
effects including asthma, kidney and stomach diseases [13]. Previously, 
some of the major metabolites of Asp are detected and reported by many 
researchers (Figure 1) [14-16]. Till now, the metabolites formation 
and their biological action is not completely understood. Attempts 
have taken to optimize the reported metabolites to understand their 
biochemical behavior on the basis of quantum mechanical methods. 
The free energy, enthalpy, dipole moment, HOMO-LUMO gap, and 
molecular electrostatic potential have been calculated to compare their 
thermal and chemical behavior. Molecular docking has been performed 
against human prostaglandin synthase protein 5F19 to predict their 
binding affinity and modes [17,18]. Pharmacokinetic prediction 
has been performed to compare their absorption, metabolism and 
toxicity. The main objective of our investigation was to understand 
the thermodynamic, molecular orbital, binding affinity, and ADMET 
properties.

Computational methods
Geometry optimization

In computer aided drug design, quantum mechanical methods 
are widely used to predict thermal, molecular orbital, and molecular 
electrostatic potential properties [19]. Initial geometry of Aspirin and 
its metabolites were taken from the online structure database named 
ChemSpider [20]. Geometry optimization and further modification 
of all structures carried out using Gaussian 09 program [21]. Density 
functional theory (DFT) with Becke’s (B) [22] three-parameter hybrid 
model, Lee, Yang and Parr’s (LYP) correlation functional [23] under 
3-21g basis set has been employed to optimize and elucidate their 
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Figure 1. Chemical structures of Aspirin and its major metabolites
1=Salicylic acid, 2= Salicylacyl glucuronide, 3= Salicylphenol glucuronide, 4= 
2,3-Dihydroxybenzoic acid, 5= Gentisic acid, 6= 2,3,5-Trihydroxybenzoic acid, 7= 
Salicyluric acid, 8= Gentisuric acid, 9= Salicyluric phenolic glucuronide
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thermal and molecular orbital properties [24]. Initial optimization 
of all compounds was performed in the gas phase. Dipole moment, 
enthalpy, free energy, and electrostatic potential were calculated for all 
the compounds.

Frontier molecular orbital features HOMO (highest occupied 
molecular orbital), LUMO (lowest unoccupied molecular orbital) 
were calculated at the same level of theory. For each of the metabolite, 
HOMO-LUMO energy gap, hardness (η), and softness (S) were 
calculated from the energies of frontier HOMO and LUMO as reported 
considering Parr and Pearson interpretation [25,26] of DFT and 
Koopmans theorem [27] on the correlation of ionization potential (I) 
and electron affinities (E) with HOMO and LUMO energy (𝜀). The 
following equations are used to calculate hardness (η), softness (S);

Molecular docking and ADMET prediction

Molecular docking simulation was performed to understand the 
mechanism of the prostaglandin H2 (PGH2) inhibition of Asp and its 
metabolites and their binding affinity and mode(s) with target protein 
[28]. The 3D structure of aspirin acetylated human cyclooxygenase-2 
(PDB ID: 5F19) was obtained in pdb format from online protein data 
bank (PDB) database [29]. All hetero atoms and water molecules were 
eliminated using PyMol (version 1.3) software packages [30]. Energy 
minimization of the protein implemented by Swiss-Pdb viewer software 
(version 4.1.0) [31]. Then optimized drugs were subjected for molecular 
docking study against human prostaglandin synthase protein (5F19). 
Finally, molecular docking simulation was performed by PyRx software 
(version 0.8) [32] considering the protein as macromolecule and the 
drug as ligand. In this analysis, rigid docking was performed where, 
all rotatable bonds were converted into non-rotatable with the center 
grid box size 20.8612, 37.5501 and 59.3402 Å along x, y and z directions 
respectively. 

AdmetSAR online database was utilized to predict the absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) properties 
of all metabolites [33]. 

Result and discussion
Thermodynamic analysis

Simple modifications of molecular structure significantly influence 
the structural properties including thermal and molecular orbital 
parameters. Spontaneity of a reaction and stability of a product can 
be predicted from the free energy, and enthalpy values [34]. Highly 
negative values are more favorable for thermal stability. In drug design, 
hydrogen bond formation and non-bonded interactions also influenced 
by dipole moment. Increased dipole moment can improve the binding 
property [35]. The free energy of Asp is -644.986 Hartree, where the 
free energies of Salicylacyl glucuronide (2), Salicylphenol glucuronide 
(3) are almost same (-1174.083 and -1174.103 Hartree respectively), 
but slightly improved thermal and dipole moment are observed in 3 
due to the presence of strong carboxylic (-COOH) group. The highest 
free energy (-1380.911 Hartree) and dipole moment (8.172 Debye) is 
observed in Salicyluric phenolic glucuronide (9) due to the presence of 
a bulky group which suggesting the possible improved binding affinity 
(Table 1).

Molecular orbital analysis

The HOMO-LUMO energies, hardness, softness of all metabolites 
are presented in Table 2. The electronic absorption relates to the 
transition from the ground to the first excited state and mainly described 
by one electron excitation from HOMO to LUMO [36]. The chemical 
hardness, softness, and chemical potential values depend on the energy 
of HOMO-LUMO [37,38]. Kinetic stability increases with the increase 
of HOMO-LUMO gap. As a result, removal of electrons from ground 
state HOMO to excited state LUMO requires more energy. In this study, 
the HOMO-LUMO gap of Asp (5.435eV) is greater than its metabolites. 
The lowest gap (4.263 eV) with highest softness (0.470 eV) is found in 
Gentisuric acid (Figure 2). 

Molecular electrostatic potential

Molecular electrostatic potential (MEP) was calculated to forecast 
the reactive sites for possible electrophilic and nucleophilic attack of 
all metabolites [39]. Red colour represent maximum negative area 
which favourable site for electrophilic attack, blue colour indicate the 
maximum positive area which favourable site for nucleophilic attack 
and green colour represent zero potential area. MEP displays molecular 
size, shape as well as positive, negative and neutral electrostatic 
potential regions simultaneously in terms of colour grading. From 
MEP map (Figure 3), region having the negative potential are over 
electronegative atom (oxygen atoms) and having positive potential are 
over hydrogen atoms. Here, the potentiality of Asp is -0.211 a.u. and 
+0.214 a.u. where 9 has the highest potentiality (-0.260 a.u. and +0.215 
a.u. respectively), which support the highest possible electrophilic and 
nucleophilic attack. 

Molecular docking analysis

Binding affinities of metabolites and protein are summarized in 
Table 3. Greater negative values of binding value indicate stronger 

MF MW Enthalpy Free energy Dipole 
moment

Asp C9H8O4 180.157 -644.936 -644.986 4.344
1 C7H6O3 138.121 -493.187 -493.228 0.666
2 C13H14O9 314.245 -1174.015 -1174.083 2.856
3 C13H14O9 314.245 -1174.035 -1174.103 5.178
4 C7H6O4 154.120 -567.964 -568.008 4.325
5 C7H6O4 154.120 -567.957 -568.002 3.900
6 C7H6O5 170.120 -642.753 -642.801 5.743
7 C9H9NO4 195.172 -699.981 -700.033 2.435
8 C9H9NO5 211.171 -774.784 -774.840 5.629
9 C15H17NO10 371.296 -1380.833 -1380.911 8.172

Table 1. Molecular formula (MF), molecular weight (MW), enthalpy, free energy in 
Hartree and dipole moment (Debye) of Aspirin and its metabolites

HOMO LUMO Gap Hardness Softness
Asp -6.999 -1.564 5.435 2.717 0.368

1 -6.179 -1.352 4.827 2.414 0.414
2 -6.055 -1.370 4.685 2.344 0.427
3 -6.279 -0.965 5.314 2.657 0.376
4 -5.898 -0.979 4.919 2.460 0.407
5 -5.692 -1.122 4.570 2.285 0.437
6 -5.430 -0.981 4.449 2.225 0.450
7 -6.354 -0.937 5.417 2.708 0.370
8 -5.355 -1.092 4.263 2.132 0.470
9 -6.032 -1.095 4.937 2.468 0.405

Table 2. Energy (eV) of HOMO, LUMO, energy gap, hardness and softness of Asp and 
its metabolites
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Figure 2. DOS plot and HOMO-LUMO energy gap of Aspirin and Gentisuric acid

binding between drugs and the receptor protein. Strong hydrogen 
bonding is the most significant contributing factor in increasing binding 
affinity of drugs with the receptor. Binding affinity and speciality change 
with the substitution/addition of different functional group. Here, the 
binding affinity of Asp is 7.0 kcal/mol, improved binding affinities are 
found for all metabolites except Salicylic acid (1). The binding affinity 
significantly improved due to the addition of glucuronide (2,3, and 9) 
and Salicyluric phenolic glucuronide shows the highest binding affinity 
(-9.5 kcal/mol) (Figure 4).

Figure 3. Molecular electrostatic potential map of Asp, 1 and 9

ADMET prediction

ADMET calculation has performed to compare the absorption, 
metabolism, and toxicity of all metabolites. According to AdmetSAR 
data (Table 3), Aspirin shows II category acute oral toxicity and rest of 
the metabolites show III category acute oral toxicity, which suggesting 
less toxicity of them than the parent drug. All the metabolites are non-
carcinogenic, show positive response for blood brain barrier (BBB) 
and human intestinal absorption criteria. All drugs are P-glycoprotein 

 
A B

Figure 4. (A) Docked conformation of Asp, 1, 4, 5, 6, and 8 at inhibition bounding site of 5F19; (B). Superimposed view of them after rigid docking
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non-inhibitor where, P-glycoprotein inhibition can interrupt the 
absorption, permeability and retention of the drugs [40]. However, all 
the compounds show weak inhibitory feature for human ether-a-go-
go-related gene (hERG) which can lead to long QT syndrome [41], so 
further more study of this aspect is necessary.

Conclusion
In this investigation, the inherent stability and biochemical 

interactions of Asp and its metabolites are studied. All the metabolites 
have lower HOMO-LUMO gap and have improved pharmacokinetic 
properties. All the metabolites (except 1) have better binding affinity 
with the receptor protein and most of them (2,3,7,8, and 9) are 
thermally more stable than the parent drug. Finally, this study may 
be helpful to understand the thermal, chemical, pharmacological and 
binding properties of Asp and its metabolites.
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