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Abstract

Complex biological systems manifest a large variety of emergent phenomena among which prominent roles belong to self-organization and swarm intelligence.
Despite astoundingly wide repertoire of observed forms, there are comparatively simple rules governing evolution of large systems towards self-organization, in
general, and towards swarm intelligence, in particular. In this work, an attempt is made to outline general guiding principles in exploration of a wide range of
seemingly dissimilar phenomena observed in large communities of individuals devoid of any personal intelligence and interacting with each other through simple
stimulus-response rules. Mathematically, these guiding principles are well captured by the Global Consensus Theorem (GCT) allowing for unified approach to such
diverse systems as biological networks, communities of social insects, robotic communities, microbial communities, communities of somatic cells, to social networks,
and to many other systems. The GCT provides a conceptual basis for understanding the emergent phenomena of self-organization occurring in large communities
without involvement of a supervisory authority, without system-wide informational infrastructure, and without mapping of general plan of action onto cognitive/
behavioral faculties of its individual members. Cancer onset and proliferation serves as an important example of application of these conceptual approaches. A
growing body of evidence confirms the premise that disruption of quorum sensing, an important aspect of swarm intelligence, plays a key role in carcinogenesis.
Other aspects of swarm intelligence, such as collective memory, adaptivity (a form of learning from experience) and ability for self-repair are the key for understanding
biological robustness and acquired chemoresistance. Yet another aspects of swarm intelligence, such as division of labor and competitive differentiation, may be
helpful in understanding of cancer compartmentalization and tumor heterogeneity.

Introduction

Swarm intelligence of social insects and microbial colonies vividly
demonstrates how far the evolution may progress having at its disposal
only simple rules of interaction between unsophisticated individuals.
The Lotka-Volterra (LVS) family of mathematical models, being among
the first models capable of describing the very complex systems with
very simple rules of interactions, demonstrates how complex may be
the behaviors of even a simple food web consisting of only one predator
and one prey. The repertoire of behaviors of multispecies populations
is virtually unlimited. In particular, it has been shown that swarm
intelligence may originate from rather mundane reasons rooted in
simple rules of interactions between these entities. The goal of this paper
is to provide a brief overview of properties of the multidimensional
nonlinear dynamical systems which have a potential of producing the
phenomenon of self-organized behavior and manifesting themselves as
swarm intelligence.

Swarm intelligence, definitions and manifestations

By definition, swarm intelligence is the organized behavior of
large communities without global organizer and without mapping the
global behavior onto the cognitive/behavioral abilities of the individual
members of the community [1]. It should be emphasized that what is
called here communities are not necessarily the communities of living
entities like bee hives or ant hills or microbial colonies. Moreover,
complexity of collective behavior of the community as a whole does not
require its individual members to have any extensive analytical tools
or even memory on their own. The key prerequisite for the possibility
of community-wide self-organization is that individual members may
interact following the stimulus-response rules. Large-scale community-
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wide behaviors and self-organized modalities are completely
determined by these low-level local interactions. There are a number
of closely related but distinctly different aspects of swarm intelligence.
These are collective memory, adaptivity, division of labor, cooperation,
sensing of environment (a.k.a., stigmergy) and quorum sensing. All
these aspects are the emergent properties resulting from local member-
to-member interactions without a general plan of action, without
a supervisory authority, and without a system-wide information
infrastructure. From the mathematical standpoint, a large system of
locally interacting units is a dynamic network governed by the laws
of nonlinear dynamics. The following question, therefore, is in order:
what exactly are the laws of local interactions leading to emergence of
complex behaviors which are referred to as swarm intelligence?

Mechanistic origins of self-organization and swarm
intelligence

A comparatively simple, and abundantly well studied, example of
the system manifesting the property of swarm intelligence is neural
network (NN) [2,3]. NN functionality originates from and closely
mimics the neuronal networks constituting the nervous systems of
higher organisms. Among the analytical tools collectively known as
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artificial intelligence, NNs retain the leading positions in a variety
of computational tasks; among them are pattern recognition and
classification, short- and long-term storage of information, prediction
and decision making, optimization, and other. Due to the fundamental
property of being universal approximators, the NNs are capable,
in principle, of representing any nonlinear dynamical system. Such
systems may possess a number of asymptotically stable attractors. This
means that starting with a large variety of initial conditions belonging
to a certain basin of attraction the system may evolve towards one of
the several well-defined stable manifolds. This process is in fact nothing
other than classification of initial states which occurs in the system
without any organizational force or supervisory authority.

The Lotka-Volterra Systems (LVS) is a large class of dynamical
systems described by the ordinary differential equation with quadratic
nonlinearities [4]. Originally inspired by ecology and population
dynamics, the LVS theory largely retains their flavors and terminology.
In particular, independent variables are assumed to be the population
levels of corresponding species, the coefficients describe the rates of
reproduction and extinction. Interactions between the species may
be mutualistic (cooperative) or antagonistic (competitive). This
terminology evokes dramatic visions of struggle for survival, either
individually or collectively, so frequently observed in the world of
living entities. However, from the mathematical standpoint, there is
nothing dramatic in the LVS dynamics: all the systems describable by
LVS, whether belonging to biological, or physical, or technological,
or social, or financial realms, will have similar dynamical behaviors
and analogous emergent properties. Due to this reason, and in order
to avoid direct ecological connotations, the variables in LVS are often
called quasi-species thus emphasizing that the actual nature of these
species is of secondary importance.

A fundamental question pertaining to competitive LVS is the
question of dynamic stability. In the context of population dynamics,
stability means that, despite the fact that all the species are struggling
with each other, they may nevertheless come to some sort of peaceful
coexistence or consensus regarding the distribution of limited resources.
Since nothing except the pair-wise interactions is included in LVS
dynamics, this consensus cannot be a result of collective decision
making or planning. The challenge and fundamental importance of
the question of stability have been articulated by S. Grossberg: “The
following problem, in one form or another, has intrigued philosophers
and scientists for hundred of years: How do arbitrarily many
individuals, populations, or states, each obeying unique and personal
laws, ever succeed in harmoniously interacting with each other to form
some sort of stable society, or collective mode of behavior? Otherwise
expressed, if each individual obeys complex laws, and is ignorant of
other individuals except via locally received signals, how is social chaos
averted? How can local ignorance and global order, or consensus, be
reconciled? ...What design constrains must be imposed on a system
of competing populations in order that it be able to generate a global
limiting pattern, or decision, in response to arbitrary initial data?...
How complicated can a system be and still generate order? [5]”.

The questions outlined above have been successfully resolved within
a wide class of competitive nonlinear dynamical systems, with NNs
and LVS being their particular cases. In order to avoid cumbersome
mathematical notation and explicit definitions within this paper we
will call these system G-systems. The fundamental Global Consensus
Theorem (GCT), proved by S. Grossberg in a series of publications
[5-8] claims that within the class of G-systems the tendency to self-
organization is rooted in fairly simple nature of things: any complex
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system whose unstoppable growth is inhibited by progressively
dwindling resources will end up with some sort of self-structuring
and consensus regarding the distribution of resources. Generality
and simplicity of the G-systems dynamics guarantees its applicability
to very wide class of natural, technological and societal phenomena.
Transition from the dominance of one quasi-species to another may
appear as a struggle for survival, and it is indeed an existential struggle
in the predator-prey food chains. Although the metaphor of struggle
for survival is widely used beyond the world of living entities, it is
obvious from the GCT that the reasons for competitive dynamics
leading to consensus may be much simpler and may have nothing to do
with personal motivation of a living entity to survive. In this context,
it is not out of place to recall that the co-founder of LVS, Alfred Lotka,
pointed out that natural selection should be approached more like a
physical principle subject to treatment by the methods of statistical
mechanics, rather than as struggle of living creatures motivated by the
desire to survive [9].

The GCT provides a deep insight into the seemingly miraculous
property of complex hierarchical systems to be self-organized at
each level without supervisory authority, without informational
infrastructure, without necessity for its units to have understanding of
the process as a whole, and without invoking the metaphor of struggle
for survival. The GST also provides the clues on how such complex
emergent phenomenon as swarm intelligence may appear in the
systems consisting of only unsophisticated individuals devoid of any
personal intelligence and interacting with each other only through
simple pair-wise stimulus-response rules.

Swarm intelligence in G-systems
Chemical networks

Perhaps the simplest G-system fully satisfying the provisions of
the GCT is a system of concurrent chemical reactions usually called a
chemical network. It is not, however, immediately evident whether or
not chemical constituents interacting through stimulus-response rules
(chemical reactions) may form a network capable of solving intelligent
tasks such as pattern recognition or computation. In this venue, the
simplest model of a chemical neuron has been proposed by Okamoto
et al. [10]. The possibility of connecting the Okamoto-type chemical
neurons into a network has been analyzed in-depth in the series of
publications by Hjelmfelt and Ross [11-14]. In particular, in Hjelmfelt
et al. [11,14] the feasibility of a chemical finite-state computing machine
has been demonstrated; such a machine would include the most
fundamental elements of traditional electronic computers, namely
binary decoder, binary adder, stack of memory and internal clock. The
possibility of a programmable chemical NN capable of storing patterns
and solving pattern recognition problems has been proved in Hjelmfelt
et al. [12]. At last, an ultimate computer science conjecture — whether
or not a Turing Machine can be constructed from oscillating chemical
reactions — has been also resolved affirmatively [13].

A systematic study of biochemical information-processing systems
has been reported in [15]. A detailed comparison of computational
capabilities of NNs and those of biochemical networks suggests the idea
that these capabilities have very much in common. In a more general
context, it should be noted that any system representable through NN
may be considered as a version of a Turing Machine. And an even more
powerful statement is also valid: any function computable by Turing
Machine can be also computed by an appropriately parameterized
processor net constructed of biochemical entities [16]. In practical
terms, all this means that each biochemical network may be thought
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as an entity performing certain computation and may be formally
represented through an appropriately constructed Turing Machine.
And conversely, any function computable by a Turing Machine may
also be computed by a specially designed biochemical network.

The famous question posed by Alan Turing in his groundbreaking
paper “Can a machine think?” [17] continues to be a highly disputed
topic in computer science, cognitive science and philosophy [18].
However, given the convincingly demonstrated equivalence between
the NNs and Turing Machines, between the chemical networks and
NN, between NNs and population dynamics, etc., it seems reasonable
to pose similar questions: “Can a chemical network think?”; “Can a
population of dumb individuals, as a whole, think?”; “Can a microbial
community think? “Can a community of cells think?”. From the
discussion above, it is reasonable to infer that a swarm of locally
interacting individuals lacking any personal intelligence can think at
least in the same sense and at the same level of intelligence as Turing
Machines and computers.

Robotic communities

A community of inanimate robots mutually interacting only
through stimulus-response rules but lacking any analytical tools
for premeditated collective strategy, is well qualified to be such a
community of individuals interacting in accordance with LVS rules
and satisfying the provisions of GCT. Proof of the principle that these
communities may possess the elements of self-organization and swarm
intelligence has been convincingly demonstrated in [19,20]. In these
works, a group of memoryless micro-robots have been programmed to
mimic individual behaviors of cockroaches. The micro-robots, however,
were not hard-wired to have any analytical tools to gather information
regarding behaviors of other robots or regarding the general plan
of action. It has been shown experimentally that this community is
capable of reproducing some patterns of collective behavior similar to
those of real cockroaches. Division of labor in communities of robots
has been studied in [21]. A comprehensive review of various aspects of
swarm intelligence in communities of robots and biological entities is
given in [22]. Cooperative behaviors in communities of autonomous
mobile robots has been reviewed in [23].

Maltzahn et al. [24] constructed a system in which the synthetic
biological and nanotechnological components communicate in vivo
to enhance disease diagnostics and delivery of therapeutic agents. In
these experiments, the swarms typically consisted of about one trillion
nanoparticles. It has been shown “that communicating nanoparticle
systems can be composed of multiple types of signaling and receiving
modules, can transmit information through multiple molecular
pathways, can operate autonomously and can target over 40 times
higher doses of chemotherapeutics to tumors than non-communicating
controls.”

Microbial communities

Highly sophisticated forms of swarm intelligence have been
observed in microbial communities. These communities represent
a perfect example of species in competition governed by the Lotka-
Volterradynamics [25-27]. Social organization of bacterial communities
has been extensively analyzed in [28]. Bacterial communities are found
to possess a form of inheritable collective memory and the ability
of maintaining self-identity. Secondly, the bacterial communities
are capable of collective decision-making, purposeful alterations of
the colony structures, and recognition and identification of other
colonies. In essence, bacterial communities as a whole may be seen as
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multicellular organisms with loosely organized cells and a sophisticated
form of intelligence [29].

Communities of somatic cells

From the perspective of Lotka-Volterra dynamics, somatic cells
are just another example of locally interacting units possessing, as a
community, the emergent property of swarm intelligence. As mentioned
in [29], “Bacteria invented the rules for cellular organization.”
However, in contrast to microbial communities which have a freedom
of spatial restructuring, self-organization in a community of somatic
cells is mostly manifested through collective shaping their internal
phenotypic traits [30]. All this means that a community of somatic
cells acts as a self-sufficient intelligent superorganism capable of taking
care of its own survival through cooperative manipulation with intra-
cellular states.

Disruption of quorum sensing as a prerequisite for
triggering carcinogenesis

Carcinogenesis is a complex systemic phenomenon encompassing
the entire hierarchy of biological organization. A great emphasis in
carcinogenesis is placed on the role of disruption of the cell-to-cell
signaling. With destruction of signaling pathways, not only the normal
regulation of individual cellular processes is damaged, but also a blow
is dealt to the, so to speak, mental capabilities of the community as
a whole. Its collective memory is wiped out or distorted, customary
division of labor between subpopulations is shifted towards aberrant
modalities, community-wide self-defensive mechanisms are weakened
or broken. In summary, the community as a whole falls into the state
of disarray and amnesia in which it is feverishly searching for new
ways towards survival. These processes in turn cause shift in expression
profiles and metabolic dynamics and eventually penetrates to the level
of DNA causing multiple mutations.

Quorum sensing (QS) is an important aspect of swarm intelligence.
Agur et al. [31] provide a brief review of relevant biological facts and
propose a mathematical model of QS boiled down to its simplest
mechanistic elements. They arrive to important insight that “that cancer
initiation is driven by disruption of the QS mechanism, with genetic
mutations being only a side-effect of excessive proliferation.” Detailed
analysis of societal interactions and quorum sensing mechanisms in
ovarian cancer metastases is given in [32]. These authors present
compelling arguments supporting the view that QS “provides a unified
and testable model for many long-observed behaviors of metastatic
cells.”

Swarm intelligence is a key to understanding acquired
chemoresistance

Numerous observations confirm the notion that a cancer tumor
may be regarded as a society of cells possessing the faculty of swarm
intelligence. One of the important aspects of swarm intelligence is
adaptivity which is a form of learning from experience.

It has been also long recognized that cancer cells, after the
fleeting inhibitory effect of a chemotherapeutic agent, may develop
the capabilities of resistance to treatment. These capabilities termed
as acquired resistance, are the manifestations of robustness of cancer
cells, both individually and collectively. In literature, in attempts
to conceptualize this complex phenomenon, there is a reductionist
tendency to associate adaptivity with multiple layers of negative
feedback loops [33]. It is obvious, however, that the entire system
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comprising myriads of such loops cannot succeed in fulfilling its
task unless these individual controls are working coherently, sharing
a common goal. Observed astounding coherence between all the
innumerable elementary processes comprising tumor adaptivity allows
one to see tumor as a separate organ [34,35] and to talk about its
defensive tactics [36]. Fundamentally, such capabilities are nothing else
than manifestations of swarm intelligence in the community of tumor
cells. It is, therefore, admissible to hypothesize that, when developing
therapeutic strategies against cancer, one needs to recognize that the
enemy is intelligent, capable of discerning the weapon applied against it
and mounting a counteroffensive.

Conclusion

Complex hierarchy of perfectly organized entities is a hallmark of
biological systems. Attempts to understand why’s and how’s of this
organization lead inquiring minds to various levels of abstraction and
depths of interpretation. In this paper, we have attempted to convey the
notion that there exists a set of comparatively simple and universal laws
of nonlinear dynamics which shape the entire biological edifice as well as
all of its compartments. These laws are equally applicable to individual
cells, as well as to biochemical networks within the cells, as well as to
the societies of cells, as well as to the societies other than the societies
of cells, as well as to the populations of individual organisms. These
laws are blind, automatic, and universal; they do not require existence
of a supervisory authority, system-wide informational infrastructure
or some sort of premeditated intelligent design. In large populations
of individuals interacting only by stimulus-response rules, these laws
generate a large variety of emergent phenomena with self-organization
and swarm intelligence being their natural manifestations.
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