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Abstract
Complex biological systems manifest a large variety of emergent phenomena among which prominent roles belong to self-organization and swarm intelligence. 
Despite astoundingly wide repertoire of observed forms, there are comparatively simple rules governing evolution of large systems towards self-organization, in 
general, and towards swarm intelligence, in particular. In this work, an attempt is made to outline general guiding principles in exploration of a wide range of 
seemingly dissimilar phenomena observed in large communities of individuals devoid of any personal intelligence and interacting with each other through simple 
stimulus-response rules. Mathematically, these guiding principles are well captured by the Global Consensus Theorem (GCT) allowing for unified approach to such 
diverse systems as biological networks, communities of social insects, robotic communities, microbial communities, communities of somatic cells, to social networks, 
and to many other systems. The GCT provides a conceptual basis for understanding the emergent phenomena of self-organization occurring in large communities 
without involvement of a supervisory authority, without system-wide informational infrastructure, and without mapping of general plan of action onto cognitive/
behavioral faculties of its individual members. Cancer onset and proliferation serves as an important example of application of these conceptual approaches. A 
growing body of evidence confirms the premise that disruption of quorum sensing, an important aspect of swarm intelligence, plays a key role in carcinogenesis. 
Other aspects of swarm intelligence, such as collective memory, adaptivity (a form of learning from experience) and ability for self-repair are the key for understanding 
biological robustness and acquired chemoresistance. Yet another aspects of swarm intelligence, such as division of labor and competitive differentiation, may be 
helpful in understanding of cancer compartmentalization and tumor heterogeneity. 
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Introduction
Swarm intelligence of social insects and microbial colonies vividly 

demonstrates how far the evolution may progress having at its disposal 
only simple rules of interaction between unsophisticated individuals. 
The Lotka-Volterra (LVS) family of mathematical models, being among 
the first models capable of describing the very complex systems with 
very simple rules of interactions, demonstrates how complex may be 
the behaviors of even a simple food web consisting of only one predator 
and one prey. The repertoire of behaviors of multispecies populations 
is virtually unlimited. In particular, it has been shown that swarm 
intelligence may originate from rather mundane reasons rooted in 
simple rules of interactions between these entities. The goal of this paper 
is to provide a brief overview of properties of the multidimensional 
nonlinear dynamical systems which have a potential of producing the 
phenomenon of self-organized behavior and manifesting themselves as 
swarm intelligence. 

Swarm intelligence, definitions and manifestations
By definition, swarm intelligence is the organized behavior of 

large communities without global organizer and without mapping the 
global behavior onto the cognitive/behavioral abilities of the individual 
members of the community [1]. It should be emphasized that what is 
called here communities are not necessarily the communities of living 
entities like bee hives or ant hills or microbial colonies. Moreover, 
complexity of collective behavior of the community as a whole does not 
require its individual members to have any extensive analytical tools 
or even memory on their own. The key prerequisite for the possibility 
of community-wide self-organization is that individual members may 
interact following the stimulus-response rules. Large-scale community-

wide behaviors and self-organized modalities are completely 
determined by these low-level local interactions. There are a number 
of closely related but distinctly different aspects of swarm intelligence. 
These are collective memory, adaptivity, division of labor, cooperation, 
sensing of environment (a.k.a., stigmergy) and quorum sensing. All 
these aspects are the emergent properties resulting from local member-
to-member interactions without a general plan of action, without 
a supervisory authority, and without a system-wide information 
infrastructure. From the mathematical standpoint, a large system of 
locally interacting units is a dynamic network governed by the laws 
of nonlinear dynamics. The following question, therefore, is in order: 
what exactly are the laws of local interactions leading to emergence of 
complex behaviors which are referred to as swarm intelligence? 

Mechanistic origins of self-organization and swarm 
intelligence 

A comparatively simple, and abundantly well studied, example of 
the system manifesting the property of swarm intelligence is neural 
network (NN) [2,3]. NN functionality originates from and closely 
mimics the neuronal networks constituting the nervous systems of 
higher organisms. Among the analytical tools collectively known as 
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artificial intelligence, NNs retain the leading positions in a variety 
of computational tasks; among them are pattern recognition and 
classification, short- and long-term storage of information, prediction 
and decision making, optimization, and other. Due to the fundamental 
property of being universal approximators, the NNs are capable, 
in principle, of representing any nonlinear dynamical system. Such 
systems may possess a number of asymptotically stable attractors. This 
means that starting with a large variety of initial conditions belonging 
to a certain basin of attraction the system may evolve towards one of 
the several well-defined stable manifolds. This process is in fact nothing 
other than classification of initial states which occurs in the system 
without any organizational force or supervisory authority. 

The Lotka-Volterra Systems (LVS) is a large class of dynamical 
systems described by the ordinary differential equation with quadratic 
nonlinearities [4]. Originally inspired by ecology and population 
dynamics, the LVS theory largely retains their flavors and terminology. 
In particular, independent variables are assumed to be the population 
levels of corresponding species, the coefficients describe the rates of 
reproduction and extinction. Interactions between the species may 
be mutualistic (cooperative) or antagonistic (competitive). This 
terminology evokes dramatic visions of struggle for survival, either 
individually or collectively, so frequently observed in the world of 
living entities. However, from the mathematical standpoint, there is 
nothing dramatic in the LVS dynamics: all the systems describable by 
LVS, whether belonging to biological, or physical, or technological, 
or social, or financial realms, will have similar dynamical behaviors 
and analogous emergent properties. Due to this reason, and in order 
to avoid direct ecological connotations, the variables in LVS are often 
called quasi-species thus emphasizing that the actual nature of these 
species is of secondary importance. 

A fundamental question pertaining to competitive LVS is the 
question of dynamic stability. In the context of population dynamics, 
stability means that, despite the fact that all the species are struggling 
with each other, they may nevertheless come to some sort of peaceful 
coexistence or consensus regarding the distribution of limited resources. 
Since nothing except the pair-wise interactions is included in LVS 
dynamics, this consensus cannot be a result of collective decision 
making or planning. The challenge and fundamental importance of 
the question of stability have been articulated by S. Grossberg: “The 
following problem, in one form or another, has intrigued philosophers 
and scientists for hundred of years: How do arbitrarily many 
individuals, populations, or states, each obeying unique and personal 
laws, ever succeed in harmoniously interacting with each other to form 
some sort of stable society, or collective mode of behavior? Otherwise 
expressed, if each individual obeys complex laws, and is ignorant of 
other individuals except via locally received signals, how is social chaos 
averted? How can local ignorance and global order, or consensus, be 
reconciled? ...What design constrains must be imposed on a system 
of competing populations in order that it be able to generate a global 
limiting pattern, or decision, in response to arbitrary initial data?...
How complicated can a system be and still generate order? [5]”.

The questions outlined above have been successfully resolved within 
a wide class of competitive nonlinear dynamical systems, with NNs 
and LVS being their particular cases. In order to avoid cumbersome 
mathematical notation and explicit definitions within this paper we 
will call these system G-systems. The fundamental Global Consensus 
Theorem (GCT), proved by S. Grossberg in a series of publications 
[5-8] claims that within the class of G-systems the tendency to self-
organization is rooted in fairly simple nature of things: any complex 

system whose unstoppable growth is inhibited by progressively 
dwindling resources will end up with some sort of self-structuring 
and consensus regarding the distribution of resources. Generality 
and simplicity of the G-systems dynamics guarantees its applicability 
to very wide class of natural, technological and societal phenomena. 
Transition from the dominance of one quasi-species to another may 
appear as a struggle for survival, and it is indeed an existential struggle 
in the predator-prey food chains. Although the metaphor of struggle 
for survival is widely used beyond the world of living entities, it is 
obvious from the GCT that the reasons for competitive dynamics 
leading to consensus may be much simpler and may have nothing to do 
with personal motivation of a living entity to survive. In this context, 
it is not out of place to recall that the co-founder of LVS, Alfred Lotka, 
pointed out that natural selection should be approached more like a 
physical principle subject to treatment by the methods of statistical 
mechanics, rather than as struggle of living creatures motivated by the 
desire to survive [9]. 

The GCT provides a deep insight into the seemingly miraculous 
property of complex hierarchical systems to be self-organized at 
each level without supervisory authority, without informational 
infrastructure, without necessity for its units to have understanding of 
the process as a whole, and without invoking the metaphor of struggle 
for survival. The GST also provides the clues on how such complex 
emergent phenomenon as swarm intelligence may appear in the 
systems consisting of only unsophisticated individuals devoid of any 
personal intelligence and interacting with each other only through 
simple pair-wise stimulus-response rules. 

Swarm intelligence in G-systems
Chemical networks

Perhaps the simplest G-system fully satisfying the provisions of 
the GCT is a system of concurrent chemical reactions usually called a 
chemical network. It is not, however, immediately evident whether or 
not chemical constituents interacting through stimulus-response rules 
(chemical reactions) may form a network capable of solving intelligent 
tasks such as pattern recognition or computation. In this venue, the 
simplest model of a chemical neuron has been proposed by Okamoto 
et al. [10]. The possibility of connecting the Okamoto-type chemical 
neurons into a network has been analyzed in-depth in the series of 
publications by Hjelmfelt and Ross [11-14]. In particular, in Hjelmfelt 
et al. [11,14] the feasibility of a chemical finite-state computing machine 
has been demonstrated; such a machine would include the most 
fundamental elements of traditional electronic computers, namely 
binary decoder, binary adder, stack of memory and internal clock. The 
possibility of a programmable chemical NN capable of storing patterns 
and solving pattern recognition problems has been proved in Hjelmfelt 
et al. [12]. At last, an ultimate computer science conjecture – whether 
or not a Turing Machine can be constructed from oscillating chemical 
reactions – has been also resolved affirmatively [13]. 

A systematic study of biochemical information-processing systems 
has been reported in [15]. A detailed comparison of computational 
capabilities of NNs and those of biochemical networks suggests the idea 
that these capabilities have very much in common. In a more general 
context, it should be noted that any system representable through NN 
may be considered as a version of a Turing Machine. And an even more 
powerful statement is also valid: any function computable by Turing 
Machine can be also computed by an appropriately parameterized 
processor net constructed of biochemical entities [16]. In practical 
terms, all this means that each biochemical network may be thought 



Rosenfeld S (2015) Critical Junction: Nonlinear Dynamics, Swarm Intelligence and Cancer Research

 Volume 1(1): 7-10Fractal Geometry and Nonlinear Anal in Med and Biol, 2015        doi: 10.15761/FGNAMB.1000103

as an entity performing certain computation and may be formally 
represented through an appropriately constructed Turing Machine. 
And conversely, any function computable by a Turing Machine may 
also be computed by a specially designed biochemical network.  

The famous question posed by Alan Turing in his groundbreaking 
paper “Can a machine think?” [17] continues to be a highly disputed 
topic in computer science, cognitive science and philosophy [18]. 
However, given the convincingly demonstrated equivalence between 
the NNs and Turing Machines, between the chemical networks and 
NNs, between NNs and population dynamics, etc., it seems reasonable 
to pose similar questions: “Can a chemical network think?”; “Can a 
population of dumb individuals, as a whole, think?”; “Can a microbial 
community think?; “Can a community of cells think?”. From the 
discussion above, it is reasonable to infer that a swarm of locally 
interacting individuals lacking any personal intelligence can think at 
least in the same sense and at the same level of intelligence as Turing 
Machines and computers. 

Robotic communities

A community of inanimate robots mutually interacting only 
through stimulus-response rules but lacking any analytical tools 
for premeditated collective strategy, is well qualified to be such a 
community of individuals interacting in accordance with LVS rules 
and satisfying the provisions of GCT. Proof of the principle that these 
communities may possess the elements of self-organization and swarm 
intelligence has been convincingly demonstrated in [19,20]. In these 
works, a group of memoryless micro-robots have been programmed to 
mimic individual behaviors of cockroaches. The micro-robots, however, 
were not hard-wired to have any analytical tools to gather information 
regarding behaviors of other robots or regarding the general plan 
of action. It has been shown experimentally that this community is 
capable of reproducing some patterns of collective behavior similar to 
those of real cockroaches. Division of labor in communities of robots 
has been studied in [21]. A comprehensive review of various aspects of 
swarm intelligence in communities of robots and biological entities is 
given in [22]. Cooperative behaviors in communities of autonomous 
mobile robots has been reviewed in [23]. 

Maltzahn et al. [24] constructed a system in which the synthetic 
biological and nanotechnological components communicate in vivo 
to enhance disease diagnostics and delivery of therapeutic agents. In 
these experiments, the swarms typically consisted of about one trillion 
nanoparticles. It has been shown “that communicating nanoparticle 
systems can be composed of multiple types of signaling and receiving 
modules, can transmit information through multiple molecular 
pathways, can operate autonomously and can target over 40 times 
higher doses of chemotherapeutics to tumors than non-communicating 
controls.” 

Microbial communities

Highly sophisticated forms of swarm intelligence have been 
observed in microbial communities. These communities represent 
a perfect example of species in competition governed by the Lotka-
Volterra dynamics [25-27]. Social organization of bacterial communities 
has been extensively analyzed in [28]. Bacterial communities are found 
to possess a form of inheritable collective memory and the ability 
of maintaining self-identity. Secondly, the bacterial communities 
are capable of collective decision-making, purposeful alterations of 
the colony structures, and recognition and identification of other 
colonies. In essence, bacterial communities as a whole may be seen as 

multicellular organisms with loosely organized cells and a sophisticated 
form of intelligence [29]. 

Communities of somatic cells
From the perspective of Lotka-Volterra dynamics, somatic cells 

are just another example of locally interacting units possessing, as a 
community, the emergent property of swarm intelligence. As mentioned 
in [29], “Bacteria invented the rules for cellular organization.” 
However, in contrast to microbial communities which have a freedom 
of spatial restructuring, self-organization in a community of somatic 
cells is mostly manifested through collective shaping their internal 
phenotypic traits [30]. All this means that a community of somatic 
cells acts as a self-sufficient intelligent superorganism capable of taking 
care of its own survival through cooperative manipulation with intra-
cellular states. 

Disruption of quorum sensing as a prerequisite for 
triggering carcinogenesis

Carcinogenesis is a complex systemic phenomenon encompassing 
the entire hierarchy of biological organization. A great emphasis in 
carcinogenesis is placed on the role of disruption of the cell-to-cell 
signaling. With destruction of signaling pathways, not only the normal 
regulation of individual cellular processes is damaged, but also a blow 
is dealt to the, so to speak, mental capabilities of the community as 
a whole. Its collective memory is wiped out or distorted, customary 
division of labor between subpopulations is shifted towards aberrant 
modalities, community-wide self-defensive mechanisms are weakened 
or broken. In summary, the community as a whole falls into the state 
of disarray and amnesia in which it is feverishly searching for new 
ways towards survival. These processes in turn cause shift in expression 
profiles and metabolic dynamics and eventually penetrates to the level 
of DNA causing multiple mutations. 

Quorum sensing (QS) is an important aspect of swarm intelligence. 
Agur et al. [31] provide a brief review of relevant biological facts and 
propose a mathematical model of QS boiled down to its simplest 
mechanistic elements. They arrive to important insight that “that cancer 
initiation is driven by disruption of the QS mechanism, with genetic 
mutations being only a side-effect of excessive proliferation.” Detailed 
analysis of societal interactions and quorum sensing mechanisms in 
ovarian cancer metastases is given in [32]. These authors present 
compelling arguments supporting the view that QS “provides a unified 
and testable model for many long-observed behaviors of metastatic 
cells.” 

Swarm intelligence is a key to understanding acquired 
chemoresistance

Numerous observations confirm the notion that a cancer tumor 
may be regarded as a society of cells possessing the faculty of swarm 
intelligence. One of the important aspects of swarm intelligence is 
adaptivity which is a form of learning from experience. 

It has been also long recognized that cancer cells, after the 
fleeting inhibitory effect of a chemotherapeutic agent, may develop 
the capabilities of resistance to treatment. These capabilities termed 
as acquired resistance, are the manifestations of robustness of cancer 
cells, both individually and collectively. In literature, in attempts 
to conceptualize this complex phenomenon, there is a reductionist 
tendency to associate adaptivity with multiple layers of negative 
feedback loops [33]. It is obvious, however, that the entire system 
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comprising myriads of such loops cannot succeed in fulfilling its 
task unless these individual controls are working coherently, sharing 
a common goal. Observed astounding coherence between all the 
innumerable elementary processes comprising tumor adaptivity allows 
one to see tumor as a separate organ [34,35] and to talk about its 
defensive tactics [36]. Fundamentally, such capabilities are nothing else 
than manifestations of swarm intelligence in the community of tumor 
cells. It is, therefore, admissible to hypothesize that, when developing 
therapeutic strategies against cancer, one needs to recognize that the 
enemy is intelligent, capable of discerning the weapon applied against it 
and mounting a counteroffensive. 

Conclusion
Complex hierarchy of perfectly organized entities is a hallmark of 

biological systems. Attempts to understand why’s and how’s of this 
organization lead inquiring minds to various levels of abstraction and 
depths of interpretation. In this paper, we have attempted to convey the 
notion that there exists a set of comparatively simple and universal laws 
of nonlinear dynamics which shape the entire biological edifice as well as 
all of its compartments. These laws are equally applicable to individual 
cells, as well as to biochemical networks within the cells, as well as to 
the societies of cells, as well as to the societies other than the societies 
of cells, as well as to the populations of individual organisms. These 
laws are blind, automatic, and universal; they do not require existence 
of a supervisory authority, system-wide informational infrastructure 
or some sort of premeditated intelligent design. In large populations 
of individuals interacting only by stimulus-response rules, these laws 
generate a large variety of emergent phenomena with self-organization 
and swarm intelligence being their natural manifestations. 
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