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Abstract
Fractal geometry can be used to create CAD models of complex shapes observed in the living organisms (cell, tissue, lung, blood vassals, brain structure, and alike) and 
in the natural world (tree, leaf, flower, landscape, coastline, cloud), as well. If one considers making a physical model of a fractal-geometry-generated CAD model, 
it is important to perform some topological transformations (e.g., concave/convex hull generation) for making the CAD model meaningful to the manufacturing 
devices. As a contribution in this area, this study describes a simple but effective procedure that can be used to generate concave hulls for fractal shapes generated by a 
random walk called Iterated Function System (IFS). One of the constituents of the proposed procedure is an in silico DNA-Based Computing. To demonstrate how 
the proposed concave hull generating procedure works, a case study has been performed, and using the information of the concave hull generated, a physical model 
of the fractal has been produced with the aid of additive manufacturing (3D printer).
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Introduction
Fractal geometry [1-3] can be used to create CAD models of 

complex shapes observed in the living organisms (cell, tissue, lung, 
blood vassals, brain structure, and alike) and in the natural world 
(tree, leaf, flower, landscape, coastline, cloud). If one considers making 
a physical model of a fractal-geometry-generated CAD model, it is 
important to perform some topological transformations for making 
the CAD model meaningful to the manufacturing devices. In doing so, 
creating concave/convex hulls [4-16] is a must. The concept of concave/
convex hull is schematically illustrated in Figure 1. The shape used in 
Figure 1a is a point-cloud that models the shape of a fern-leaf created by 
a special random walk called Iterative Function System (IFS) [17,18]. 
The convex hull underlying the fern-leaf is shown in Figure 1b, which is 
the smallest perimeter fence enclosing the point-cloud. Some concave 
hulls (back and red boundaries) underlying the fern-leaf are shown in 
Figure 1c, which are the boundary fences encompassing the point-cloud 
as closely as possible. In case of concave hulls, internal and external 
boundary fences can be considered. For the case shown in Figure 1, 
the outer and internal concave hulls are shown by the black and red 
boundary fences, as seen from Figure 1c, respectively. Compared to the 
convex hull, concave hulls are more effective in preserving the shape 
information (compare the boundary fences shown in Figure 1b and 1c.

As mentioned before, if one considers making a physical model 
of a fractal shape from its CAD model (in the case of IFS fractals, the 
CAD model takes the form of a point-cloud), it is important to create 
a concave/convex hull first. The reason is that the concave/convex hull 
helps create other data (e.g., tool-paths [12,13] and STL data [19]) 
necessary for creating a physical model either by using subtractive 
manufacturing or by using additive manufacturing [12,13,16]. In 
certain cases, the remodeling of the fractal-geometry-generated CAD 
model is necessary for the sake of physical model building process 
[12,13,16,20]. Therefore, creating concave/convex hulls for the fractal-
geometry-generated CAD model has been an active research topic. A 
series of systematic transformations is needed to make the information 
of the CAD model meaningful for the concave/convex hull generation 

procedure. Nevertheless, most of the procedures developed so far 
for generating concave/convex hull are computationally heavy. This 
article deals with this issue by proposing a new concave hull generating 
procedure, where the primary shape information is IFS-generated 
point-cloud (i.e., a fractal). The focus is on generating the outer 
concave hull, not the inner ones. One of the important constituents of 
the proposed procedure is a transformation that employs an in silico 
DNA-Based Computing (DBC) [21-24]. Thus, the remainder of this 
article is organized as follows. Section 2 describes the DBC employed in 
this article. Section 3 describes the proposed DBC driven outer concave 
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Figure 1. Concept of concave/convex hull.
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hull generation procedure. Section 4 describes a case study showing 
the effectiveness of the proposed procedure. Section 5 provides the 
concluding remarks of this study.

DNA-based computing (DBC)

A nature inspired computing methodology called DBC has been 
developed that takes the inspirations from the central dogma [25] of 
molecular biology. Central dogma of molecular biology simply means 
that once the sequential information of DNA/RNA has passed into 
protein (a sequence of amino acids) it cannot get out again [25]. A 
comprehensive description of the central dogma based DBC can be 
found in [21,22]. The remainder of this section briefly describes the 
DBC employed in this article for generating a concave hull.

Figure 2 schematically describes the form of DBC used in this 
article. In general, the DBC first maps a given binary array into DNA 
array. Finally, it maps the generated DNA array to a protein array 
(i.e., to a sequence of amino acids). The binary array must be a piece 
of information underlying the given problem (the point-cloud of the 
fractal shape created by a certain IFS). The protein array must help solve 
the given problem (in this case the concave hull creation problem).

As it is observed in Figure 2, DBC first maps the given binary array 
∀bij ∈ {0,1} to an DNA array, ∀DNAij ∈ {A, C, G, T}. In doing so, two 
consecutive elements (bijbi+1j or bijbij+1 = 00, 01, 10, or 11) are mapped 
into one of the elements taken from {A, C, G, T}.

This process underlies four different types of reading-frame: 
continuous/discrete raw-/column-wise reading-frames. The case shown 
in Figure 2 corresponds to continuous column-wise reading-frame 
where binary array is read in the the manner of bijbi+1j, not bijbij+1, while 
creating each elements of DNA array, i.e., DNAij. Since ∀DNAij ∈ {A, C, 
G, T}, three consecutive elements of DNA array DNAijDNAi+1jDNAi+2j 
or DNAijDNAij+1DNAij+2 = AAA, AAC, AAG, AAT, ACA, ACC, ACG, 
ACT, AGA, AGC, AGG, AGT, ATA, ATC, ATG, ATT, CAA, CAC, 
CAG, CAT, CCA, CCC, CCG, CCT, CGA, CGC, CGG, CGT, CTA, 
CTC, CTG, CTT, GAA, GAC, GAG, GAT, GCA, GCC, GCG, GCT, 
GGA, GGC, GGG, GGT, GTA, GTC, GTG, GTT, TAA, TAC, TAG, 
TAT, TCA, TCC, TCG, TCT, TGA, TGC, TGG, TGT, TTA, TTC, 
TTG, or TTT. Each of these three-element combinations is called a 
codon and is mapped into a one-letter symbol of amino acid taken 
from the set of symbols {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, 
V, W, X, Y} using the genetic code [21,22]. The genetic code is listed in 
Table 1. Note that X (Table 1) denotes one of the stop codons not an 
amino acid as such [21,22].

As a result, a protein array having ∀Proteinij ∈ {A, C, D, E, F, G, 
H, I, K, L, M, N, P, Q,R, S, T, V, W, X, Y} forms. The case shown in 
figure 2 corresponds to a continuous column-wise reading-frame, 
i.e., DNAijDNAi+1jDNAi+2j not DNAijDNAij+1DNAij+2. As understood 
from the arbitrary case shown in Figure 2, a few-element piece of 
information (i.e., the binary or DNA array) transforms to a many-
element piece of information (i.e., protein array) due to DBC. This 
characteristic of DBC has been found effective in solving pattern 
recognition problems of complex shapes [21-23]. In the case of creating 
an external concave hull, DBC can also be used. In this case, the protein 
must help distinguish the internal segment of a point-cloud from the 
external one. To describe the potentiality of DBC being a concave-
hull-generator, consider the schematic diagram shown in Figure 3. The 
protein array shown in Figure 3 (right-hand-side) clearly distinguishes 
the outer and internal boundary fences. In this particular case, outer 
and inner boundary fences can be created following the closed loops 
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Figure 2. The DBC.
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guided by an element denoted as K of the protein array. This may help 
simplify the concave hull generation process.

Proposed concave hull generating procedure
This section describes the proposed concave hull generation 

procedure. The procedure underlies four steps, as follows:

Step 1−creating an IFS fractal

To create an IFS fractal in the form of a point-cloud consisting 
of N + 1 points, {(x0,y0), (xi,yi) | i = 1,…,N}, an algorithm called IFS 
Algorithm can be used [12,13,17,18, 22], as follows.

IFS Algorithm:

Seed (x0, y0)
Input Number of Iterations N

Mapping Parameters (aj,bj,cj,dj,ej,fj), j = 1,...,n
Probabilities (pj | j = 1,...,n)

Calculation
w1 = [0,p1],...,wj = [cpj−1,cpj],...,wn = [cpn−1, cpn]
For i = 1,...,N
Generate a Random Number: ri ← [0,1]
If ri = w1 Then xi = a1xi−1 + b1yi−1 + e1, yi = c1xi−1 + d1yi−1 + f1

Iteration …
If ri = wj Then xi = ajxi−1 + bjyi−1 + ej, yi = cjxi−1 + djyi−1 + fj

…
If ri = wn Then xi = anxi−1 + bnyi−1 + en, yi = cnxi−1 + dnyi−1 + fn

An IFS Algorithm has three segments, namely, Input, Calculation, 
and Iteration. In the Input segment four inputs items are set by the 
user, namely, Seed (x0, y0), Number of Iterations (N), Mapping 
Parameters ((aj,bj,cj,dj,ej,fj), j = 1,...,n), and Probabilities ((pj | j= 
1,...,n)). The Calculation segment calculates the relative weights w1 = 
[0,p1],...,wj = [cpj−1,cpj],...,wn = [cpn−1, cpn] where cpj =p1+...+pj, j = 1,...,n, 
of the affine mappings needed to create points, {(xi,yi) | i = 1,…,N}. The 
Iteration segment creates the points {(xi,yi) | i = 1,…,N} in a recursive 
manner xi = ajxi−1   + bjyi−1   + ej, yi = cjxi−1   + djyi−1   + fj, j = 1,…,n, i = 
1,…,N, preserving, at the same time, the relative weights of the affine    
mappings. It is worth mentioning that p1+...+pn = 1 and all affine 
mappings are contracting mappings. See [17,18] for the conditions 
needed for an affine mapping to be included in an IFS. In addition, in 
most cases, Seed (x0, y0) is equal to (0,0).

Step 2−Creating a binary array

In this step, a binary array BA = (…,bkl,…), ∀bkl ∈{0, 1}, is created 
from (xi,yi), i =0,…,N, i.e., from the point-cloud that models a fractal. 
To do this, a 2-dimentional grid is considered. To define the grid, the 
intervals xmin,…,xk,…,xmax and ymin,…,yl,…,ymax are needed where xmin ≤ 
min({xi | i = 0,…,N}), xmax ≥ max({xi | i = 0,…,N}), ymin ≤ min({yi | i = 
0,…,N}), ymax ≥ max({yi | i = 0,…,N}), xk+1 = xk +  x, k = 1,2,…,Nk, xk=0 = 
xmin, xk=Nk = xmax, yl+1 = yl +  y, yl=0 = ymin, and yl=Nl = ymax.

{ 1 11,( ) ( ) ( ) ( ), {0,..., }
0,

i k i k i l i lx x x x y y y y i N
otherwiseklb + +≥ Λ ≥ Λ ≥ Λ ≤ ∃=  (1)

It is worth mentioning that xmin, xmax, ymin, and ymax are user-defined 
values in accordance with the above conditions.

Step 3−Creating a protein array

In this step, the binary BA = (…,bkl,…) is transformed into a 
protein array using the DBC described in Section 2. The protein array 
is denoted as Protein = (…,Proteinij,…).

Needless to say, ∀Proteinij ∈ {A, C, D, E, F, G, H, I, K, L, M, N, P, 
Q, R, S, T, V, W, X, Y}.

Step 4−Recreating binary array

In this step, the protein array Protein is transformed into another 
binary array PB = (…,PBij,…) using a user-defined rule. The goal is 
to preserve the information of outer and inner segments of the fractal 
shape for generating the outer concave hull. For example, consider 
the arbitrary case shown in Figure 4. In this case, one can set a rule as 
follows: If Proteinij = K and Proteinij+1 = K, then PBij = 1; Otherwise PBij 
= 0. If this rule is applied to the protein array shown in Figure 4 (left-
hand-side), then a binary array PB = (…,PBij,…) also shown in Figure 
4 (right-hand-side) is produced. As observed from Figure 4, this binary 
array clearly distinguishes the outer boundary (given by the digit 1) 
from the inner boundary (given by the digit 0).

Step 5−Determination of Boundary Fence

This is the last step where the boundary fence array BF = (...,BFij,...) 
is determined by transforming the PB = (…,PBij,…). The goal is to find 
out the coordinates of the outer   boundary fence. The procedure of 
getting PB = (…,PBij,…) is described as follows.

Let CM = {-1,0,1}⋅{-1,0,1}−{(0,0)} be a set and (p,q) be a member of 
it, i.e., (p,q) ∈ CM. Let BFij(p,q) be a binary digit, i.e, BFij(p,q) ∈ {0,1}, as 

Protein Array Outer Concave Hull

Figure 3. The concept of outer concave hull from the view point of protein array

No Amino Acid (single- letter symbol) Codon in term of DNA base-pairs
1 Isoleucine (I) ATT, ATC, ATA
2 Leucine (L) CTT, CTC, CTA, CTG, TTA, TTG
3 Valine (V) GTT, GTC, GTA, GTG
4 Phenylalanine (F) TTT, TTC
5 Methionine (M) ATG
6 Cysteine (C) TGT, TGC
7 Alanine (A) GCT, GCC, GCA, GCG
8 Glycine (G) GGT, GGC, GGA, GGG
9 Proline (P) CCT, CCC, CCA, CCG
10 Threonine (T) ACT, ACC, ACA, ACG
11 Serine (S) TCT, TCC, TCA, TCG, AGT, AGC
12 Tyrosine (Y) TAT, TAC
13 Tryptophan (W) TGG
14 Glutamine(Q) CAA, CAG
15 Asparagine (N) AAT, AAC
16 Histidine (H) CAT, CAC
17 Glutamic acid (E) GAA, GAG
18 Aspartic acid (D) GAT, GAC
19 Lysine (K) AAA, AAG
20 Arginine (R) CGT, CGC, CGA, CGG, AGA, 

AGG
- Stop (X) TAA, TAG, TGA

Table 1. The genetic code.
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defined by the equation (2).

( ) ( ) ( ){ , 0 0
0,, ij ij i pj qPB PB PB

ij otherwiseBF p q + +≥ ∧ ==                             (2)

All possible values of BFij(p,q) can be added to determine the elements 
of PB. This yields equation (3), as follows

The coordinates of the elements corresponding to BFij > 0 
represent the outer boundary fence or the outer concave hull. Figure 
5 shows the BF = (...,BFij,...) that has been determined from the PB = 
(…,PBij,…) shown in Figure 4 using the procedure described above. 
One can observe from figure 5 that BFij > 0 clearly defines the required 
concave hull.

Case study
This section describes a case study where an IFS fractal modeling a 

snow crystal. The mapping parameters and the probabilities are shown 
in Table 2. As listed in Table 2, seven affine mappings are used to create 
the model of the snow crystal in terms of a point-cloud. The results 
obtained applying the Steps 1-5, as described in Section 3, are shown 
in Figure 6.

In particular, Figure 6a shows the point-cloud (the result of Step 1), 
Figure 6b shows the binary array (the result of Step 2), Figure 6c shows 
the protein array (the result of Step 3), Figure 6d shows the binary 
array called PB (the result of Step 4), Figure 6e shows the boundary 
fence array (the result of Step 5). As observed in Figures 6a-e, the outer 
and inner segments become distinguishable due to the application of 
the Steps 1-5 in a successive manner. A physical model has also been 
manufactured by an additive manufacturing equipment (a 3D printer), 
as shown in Figure 6f. In doing so, the outer concave hull shown in 

Figure 6e has been used to generate the STL data. The STL data 
generating process can be found in [16].

This case study clearly demonstrates that the presented concave 
hull generation procedure is useful means to handle complex shapes 
for the sake of manufacturing their physical models.

Concluding remarks
Fractal geometry has extensively been used to quantify the 

complexity and normality/abnormality of the shapes observed in the 
living organisms (e.g., cell, tissue, lung, blood vassals, brain structures). 
These shapes are primarily represented by point-clouds having 
internal and external boundary fences (concave hulls). The extraction 
of these boundary fences is not an easy task. This study sheds some 
lights on this issue by proposing a simple but effective concave hull 
generating procedure where an in silico DNA-Based Computing plays 
an important role. It is demonstrated that the proposed concave hull 

Figure 5. Significance of boundary fence array.

Figure 6. A case study of concave hull generation and physical model building.

Figure 4. Significance of PB.

Mapping Mapping Sets (i)
Parameters 1 2 3 4 5 6 7

ai 0.5 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333
bi -0.2887 0 0 0 0 0 0
ci 0.28868 0 0 0 0 0 0
di 0.5 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333
ei 0 0.57735 0 -0.5774 -0.5774 0 0.57735
fi 0 0.33333 0.66667 0.33333 -0.3333 -0.6667 -0.3333

Table 2. Settings of IFS.
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generating procedure is able to create the outer boundary fence of a 
fractal (i.e., point-cloud created by an IFS) in a lucid manner. Further 
study can be carried out to generate the inner concave hulls of IFS 
fractals. Nevertheless, to get benefited from the capability of additive 
manufacturing in producing complex shapes having biomedical 
significance, the studies similar to this one must be continue in the 
years to come.
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