
Research Article

Fractal Geometry and Nonlinear Analysis in Medicine and Biology

Fractal Geometry and Nonlinear Anal in Med and Biol, 2016 doi: 10.15761/FGNAMB.1000122 Volume 2(1): 129-133

ISSN: 2058-9506

Creating concave hull for IFS fractals using DNA-based
computing
AMM Sharif Ullah*
Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan

Abstract
Fractal geometry can be used to create CAD models of complex shapes observed in the living organisms (cell, tissue, lung, blood vassals, brain structure, and alike) and
in the natural world (tree, leaf, flower, landscape, coastline, cloud), as well. If one considers making a physical model of a fractal-geometry-generated CAD model,
it is important to perform some topological transformations (e.g., concave/convex hull generation) for making the CAD model meaningful to the manufacturing
devices. As a contribution in this area, this study describes a simple but effective procedure that can be used to generate concave hulls for fractal shapes generated by a
random walk called Iterated Function System (IFS). One of the constituents of the proposed procedure is an in silico DNA-Based Computing. To demonstrate how
the proposed concave hull generating procedure works, a case study has been performed, and using the information of the concave hull generated, a physical model
of the fractal has been produced with the aid of additive manufacturing (3D printer).

Correspondence to: Sharif Ullah AMM, Department of Mechanical Engineering,
Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507,
Japan, Tel/Fax: + 81-157-26-9207; E-mail: ullah@mail.kitami-it.ac.jp

Key words: fractals, concave/convex hull, DNA-based computing, additive
manufacturing

Received: January 27, 2016; Accepted: March 03, 2016; Published: March 07,
2016

Introduction
Fractal geometry [1-3] can be used to create CAD models of

complex shapes observed in the living organisms (cell, tissue, lung,
blood vassals, brain structure, and alike) and in the natural world
(tree, leaf, flower, landscape, coastline, cloud). If one considers making
a physical model of a fractal-geometry-generated CAD model, it is
important to perform some topological transformations for making
the CAD model meaningful to the manufacturing devices. In doing so,
creating concave/convex hulls [4-16] is a must. The concept of concave/
convex hull is schematically illustrated in Figure 1. The shape used in
Figure 1a is a point-cloud that models the shape of a fern-leaf created by
a special random walk called Iterative Function System (IFS) [17,18].
The convex hull underlying the fern-leaf is shown in Figure 1b, which is
the smallest perimeter fence enclosing the point-cloud. Some concave
hulls (back and red boundaries) underlying the fern-leaf are shown in
Figure 1c, which are the boundary fences encompassing the point-cloud
as closely as possible. In case of concave hulls, internal and external
boundary fences can be considered. For the case shown in Figure 1,
the outer and internal concave hulls are shown by the black and red
boundary fences, as seen from Figure 1c, respectively. Compared to the
convex hull, concave hulls are more effective in preserving the shape
information (compare the boundary fences shown in Figure 1b and 1c.

As mentioned before, if one considers making a physical model
of a fractal shape from its CAD model (in the case of IFS fractals, the
CAD model takes the form of a point-cloud), it is important to create
a concave/convex hull first. The reason is that the concave/convex hull
helps create other data (e.g., tool-paths [12,13] and STL data [19])
necessary for creating a physical model either by using subtractive
manufacturing or by using additive manufacturing [12,13,16]. In
certain cases, the remodeling of the fractal-geometry-generated CAD
model is necessary for the sake of physical model building process
[12,13,16,20]. Therefore, creating concave/convex hulls for the fractal-
geometry-generated CAD model has been an active research topic. A
series of systematic transformations is needed to make the information
of the CAD model meaningful for the concave/convex hull generation

procedure. Nevertheless, most of the procedures developed so far
for generating concave/convex hull are computationally heavy. This
article deals with this issue by proposing a new concave hull generating
procedure, where the primary shape information is IFS-generated
point-cloud (i.e., a fractal). The focus is on generating the outer
concave hull, not the inner ones. One of the important constituents of
the proposed procedure is a transformation that employs an in silico
DNA-Based Computing (DBC) [21-24]. Thus, the remainder of this
article is organized as follows. Section 2 describes the DBC employed in
this article. Section 3 describes the proposed DBC driven outer concave

 (a) Model of fern-leaf (an (c) Some concave hulls IFS fractal (b) A convex hull

Figure 1. Concept of concave/convex hull.

Sharif Ullah AMM (2016) Creating concave hull for IFS fractals using DNA-based computing

 Volume 2(1): 129-133Fractal Geometry and Nonlinear Anal in Med and Biol, 2016 doi: 10.15761/FGNAMB.1000122

hull generation procedure. Section 4 describes a case study showing
the effectiveness of the proposed procedure. Section 5 provides the
concluding remarks of this study.

DNA-based computing (DBC)

A nature inspired computing methodology called DBC has been
developed that takes the inspirations from the central dogma [25] of
molecular biology. Central dogma of molecular biology simply means
that once the sequential information of DNA/RNA has passed into
protein (a sequence of amino acids) it cannot get out again [25]. A
comprehensive description of the central dogma based DBC can be
found in [21,22]. The remainder of this section briefly describes the
DBC employed in this article for generating a concave hull.

Figure 2 schematically describes the form of DBC used in this
article. In general, the DBC first maps a given binary array into DNA
array. Finally, it maps the generated DNA array to a protein array
(i.e., to a sequence of amino acids). The binary array must be a piece
of information underlying the given problem (the point-cloud of the
fractal shape created by a certain IFS). The protein array must help solve
the given problem (in this case the concave hull creation problem).

As it is observed in Figure 2, DBC first maps the given binary array
∀bij ∈ {0,1} to an DNA array, ∀DNAij ∈ {A, C, G, T}. In doing so, two
consecutive elements (bijbi+1j or bijbij+1 = 00, 01, 10, or 11) are mapped
into one of the elements taken from {A, C, G, T}.

This process underlies four different types of reading-frame:
continuous/discrete raw-/column-wise reading-frames. The case shown
in Figure 2 corresponds to continuous column-wise reading-frame
where binary array is read in the the manner of bijbi+1j, not bijbij+1, while
creating each elements of DNA array, i.e., DNAij. Since ∀DNAij ∈ {A, C,
G, T}, three consecutive elements of DNA array DNAijDNAi+1jDNAi+2j
or DNAijDNAij+1DNAij+2 = AAA, AAC, AAG, AAT, ACA, ACC, ACG,
ACT, AGA, AGC, AGG, AGT, ATA, ATC, ATG, ATT, CAA, CAC,
CAG, CAT, CCA, CCC, CCG, CCT, CGA, CGC, CGG, CGT, CTA,
CTC, CTG, CTT, GAA, GAC, GAG, GAT, GCA, GCC, GCG, GCT,
GGA, GGC, GGG, GGT, GTA, GTC, GTG, GTT, TAA, TAC, TAG,
TAT, TCA, TCC, TCG, TCT, TGA, TGC, TGG, TGT, TTA, TTC,
TTG, or TTT. Each of these three-element combinations is called a
codon and is mapped into a one-letter symbol of amino acid taken
from the set of symbols {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T,
V, W, X, Y} using the genetic code [21,22]. The genetic code is listed in
Table 1. Note that X (Table 1) denotes one of the stop codons not an
amino acid as such [21,22].

As a result, a protein array having ∀Proteinij ∈ {A, C, D, E, F, G,
H, I, K, L, M, N, P, Q,R, S, T, V, W, X, Y} forms. The case shown in
figure 2 corresponds to a continuous column-wise reading-frame,
i.e., DNAijDNAi+1jDNAi+2j not DNAijDNAij+1DNAij+2. As understood
from the arbitrary case shown in Figure 2, a few-element piece of
information (i.e., the binary or DNA array) transforms to a many-
element piece of information (i.e., protein array) due to DBC. This
characteristic of DBC has been found effective in solving pattern
recognition problems of complex shapes [21-23]. In the case of creating
an external concave hull, DBC can also be used. In this case, the protein
must help distinguish the internal segment of a point-cloud from the
external one. To describe the potentiality of DBC being a concave-
hull-generator, consider the schematic diagram shown in Figure 3. The
protein array shown in Figure 3 (right-hand-side) clearly distinguishes
the outer and internal boundary fences. In this particular case, outer
and inner boundary fences can be created following the closed loops

Binary array Protein array

R D T L X D T L F L

C

A L

0 1 0 0 1 1 0 01 1 1 10 1 10 L L X E N T L L C

A R

A L

0 1 1 1 0 0 0 11 1 0 10 1 11 D T R E K N T L L X D T R

1 0 0 1 0 0 0 01 1 1 00 1 00 D T

L C A R

A L

L C

A R D

1 0 0 1 1 0 1 01 1 1 01 0 01 L F F L

C

A L F L

C

A L F

0 1 1 1 1 1 0 11 1 1 01 1 11 F F L X E K K K K K N T L

1 1 1 1 1 0 0 00 0 0 00 1 11 R

A

R

A R A

L

X D T R A

R

0 1 0 1 0 1 0 11 0 0 10 1 00 E N

T R

D T L F

L C

A R D

1 0 0 0 1 0 0 11 1 1 01 0 01 N T R A L X E N T

L C

A L

0 0 0 1 0 1 1 00 0 1 10 1 11 T L F L X E N T R

E

K N T

0 0 1 1 1 1 0 00 1 0 00 0 11 K K N T

L C

A R D

T

L F F

0 0 0 0 0 1 1 01 0 0 11 1 11 L F F

L C

A L X D

T

L C A

0 1 1 1 1 1 0 11 0 0 11 0 11 F L X

E K

K N T L

X

D T R

1 1 1 1 0 0 0 00 1 1 00 1 00 C A L

L C A R

A R

A

L L C

1 1 0 1 1 1 0 10 1 0 11 1 01 E K K

N T R

D T L

L

X E K

1 0 0 0 0 0 1 00 1 1 10 0 00 L C

A R A L

X D T

L

X E N

1 1 1 0 1 0 1 1 0 0 1 10 0 01

DNA Array

C

G A

C

T G

A C

T T T

G C

T G

C

T T G A

A C

T T G

C G C

T T

DNA generating rule G

A

C G A A

A C

T T G

A

C G A

G

A

C

T

G C G C

T T

G C

G

A

C

00 =

A

C T

T T T

G C

T T T

G C

T T T

01 =

C

T

T T T G A

A

A A A A

A C

T T

10 =

G

C G C G C G

C T

G A C G C

G A

11 = T

G A A C G A

C T T

T G C G A

C

Genetic RuleA A C G C T

G

A A C

T G C T

T

A C

T T T

G A A C G A A A

C T

A A

A A

C T G C G A C T T

T T

C T

T T

T G C T G A C T G

C T

T T

T

G A A A A C T G A

C G A

T G C T T G C G C G C T

T G C

G A A A A C G A C T T G

A A A

T T G C G C T G A C T G

A A C

Figure 2. The DBC.

Sharif Ullah AMM (2016) Creating concave hull for IFS fractals using DNA-based computing

 Volume 2(1): 129-133Fractal Geometry and Nonlinear Anal in Med and Biol, 2016 doi: 10.15761/FGNAMB.1000122

guided by an element denoted as K of the protein array. This may help
simplify the concave hull generation process.

Proposed concave hull generating procedure
This section describes the proposed concave hull generation

procedure. The procedure underlies four steps, as follows:

Step 1−creating an IFS fractal

To create an IFS fractal in the form of a point-cloud consisting
of N + 1 points, {(x0,y0), (xi,yi) | i = 1,…,N}, an algorithm called IFS
Algorithm can be used [12,13,17,18, 22], as follows.

IFS Algorithm:

Seed (x0, y0)
Input Number of Iterations N

Mapping Parameters (aj,bj,cj,dj,ej,fj), j = 1,...,n
Probabilities (pj | j = 1,...,n)

Calculation
w1 = [0,p1],...,wj = [cpj−1,cpj],...,wn = [cpn−1, cpn]
For i = 1,...,N
Generate a Random Number: ri ← [0,1]
If ri = w1 Then xi = a1xi−1 + b1yi−1 + e1, yi = c1xi−1 + d1yi−1 + f1

Iteration …
If ri = wj Then xi = ajxi−1 + bjyi−1 + ej, yi = cjxi−1 + djyi−1 + fj

…
If ri = wn Then xi = anxi−1 + bnyi−1 + en, yi = cnxi−1 + dnyi−1 + fn

An IFS Algorithm has three segments, namely, Input, Calculation,
and Iteration. In the Input segment four inputs items are set by the
user, namely, Seed (x0, y0), Number of Iterations (N), Mapping
Parameters ((aj,bj,cj,dj,ej,fj), j = 1,...,n), and Probabilities ((pj | j=
1,...,n)). The Calculation segment calculates the relative weights w1 =
[0,p1],...,wj = [cpj−1,cpj],...,wn = [cpn−1, cpn] where cpj =p1+...+pj, j = 1,...,n,
of the affine mappings needed to create points, {(xi,yi) | i = 1,…,N}. The
Iteration segment creates the points {(xi,yi) | i = 1,…,N} in a recursive
manner xi = ajxi−1 + bjyi−1 + ej, yi = cjxi−1 + djyi−1 + fj, j = 1,…,n, i =
1,…,N, preserving, at the same time, the relative weights of the affine
mappings. It is worth mentioning that p1+...+pn = 1 and all affine
mappings are contracting mappings. See [17,18] for the conditions
needed for an affine mapping to be included in an IFS. In addition, in
most cases, Seed (x0, y0) is equal to (0,0).

Step 2−Creating a binary array

In this step, a binary array BA = (…,bkl,…), ∀bkl ∈{0, 1}, is created
from (xi,yi), i =0,…,N, i.e., from the point-cloud that models a fractal.
To do this, a 2-dimentional grid is considered. To define the grid, the
intervals xmin,…,xk,…,xmax and ymin,…,yl,…,ymax are needed where xmin ≤
min({xi | i = 0,…,N}), xmax ≥ max({xi | i = 0,…,N}), ymin ≤ min({yi | i =
0,…,N}), ymax ≥ max({yi | i = 0,…,N}), xk+1 = xk + x, k = 1,2,…,Nk, xk=0 =
xmin, xk=Nk = xmax, yl+1 = yl + y, yl=0 = ymin, and yl=Nl = ymax.

{ 1 11,() () () (), {0,..., }
0,

i k i k i l i lx x x x y y y y i N
otherwiseklb + +≥ Λ ≥ Λ ≥ Λ ≤ ∃= (1)

It is worth mentioning that xmin, xmax, ymin, and ymax are user-defined
values in accordance with the above conditions.

Step 3−Creating a protein array

In this step, the binary BA = (…,bkl,…) is transformed into a
protein array using the DBC described in Section 2. The protein array
is denoted as Protein = (…,Proteinij,…).

Needless to say, ∀Proteinij ∈ {A, C, D, E, F, G, H, I, K, L, M, N, P,
Q, R, S, T, V, W, X, Y}.

Step 4−Recreating binary array

In this step, the protein array Protein is transformed into another
binary array PB = (…,PBij,…) using a user-defined rule. The goal is
to preserve the information of outer and inner segments of the fractal
shape for generating the outer concave hull. For example, consider
the arbitrary case shown in Figure 4. In this case, one can set a rule as
follows: If Proteinij = K and Proteinij+1 = K, then PBij = 1; Otherwise PBij
= 0. If this rule is applied to the protein array shown in Figure 4 (left-
hand-side), then a binary array PB = (…,PBij,…) also shown in Figure
4 (right-hand-side) is produced. As observed from Figure 4, this binary
array clearly distinguishes the outer boundary (given by the digit 1)
from the inner boundary (given by the digit 0).

Step 5−Determination of Boundary Fence

This is the last step where the boundary fence array BF = (...,BFij,...)
is determined by transforming the PB = (…,PBij,…). The goal is to find
out the coordinates of the outer boundary fence. The procedure of
getting PB = (…,PBij,…) is described as follows.

Let CM = {-1,0,1}⋅{-1,0,1}−{(0,0)} be a set and (p,q) be a member of
it, i.e., (p,q) ∈ CM. Let BFij(p,q) be a binary digit, i.e, BFij(p,q) ∈ {0,1}, as

Protein Array Outer Concave Hull

Figure 3. The concept of outer concave hull from the view point of protein array

No Amino Acid (single- letter symbol) Codon in term of DNA base-pairs
1 Isoleucine (I) ATT, ATC, ATA
2 Leucine (L) CTT, CTC, CTA, CTG, TTA, TTG
3 Valine (V) GTT, GTC, GTA, GTG
4 Phenylalanine (F) TTT, TTC
5 Methionine (M) ATG
6 Cysteine (C) TGT, TGC
7 Alanine (A) GCT, GCC, GCA, GCG
8 Glycine (G) GGT, GGC, GGA, GGG
9 Proline (P) CCT, CCC, CCA, CCG
10 Threonine (T) ACT, ACC, ACA, ACG
11 Serine (S) TCT, TCC, TCA, TCG, AGT, AGC
12 Tyrosine (Y) TAT, TAC
13 Tryptophan (W) TGG
14 Glutamine(Q) CAA, CAG
15 Asparagine (N) AAT, AAC
16 Histidine (H) CAT, CAC
17 Glutamic acid (E) GAA, GAG
18 Aspartic acid (D) GAT, GAC
19 Lysine (K) AAA, AAG
20 Arginine (R) CGT, CGC, CGA, CGG, AGA,

AGG
- Stop (X) TAA, TAG, TGA

Table 1. The genetic code.

Sharif Ullah AMM (2016) Creating concave hull for IFS fractals using DNA-based computing

 Volume 2(1): 129-133Fractal Geometry and Nonlinear Anal in Med and Biol, 2016 doi: 10.15761/FGNAMB.1000122

defined by the equation (2).

() () (){ , 0 0
0,, ij ij i pj qPB PB PB

ij otherwiseBF p q + +≥ ∧ == (2)

All possible values of BFij(p,q) can be added to determine the elements
of PB. This yields equation (3), as follows

The coordinates of the elements corresponding to BFij > 0
represent the outer boundary fence or the outer concave hull. Figure
5 shows the BF = (...,BFij,...) that has been determined from the PB =
(…,PBij,…) shown in Figure 4 using the procedure described above.
One can observe from figure 5 that BFij > 0 clearly defines the required
concave hull.

Case study
This section describes a case study where an IFS fractal modeling a

snow crystal. The mapping parameters and the probabilities are shown
in Table 2. As listed in Table 2, seven affine mappings are used to create
the model of the snow crystal in terms of a point-cloud. The results
obtained applying the Steps 1-5, as described in Section 3, are shown
in Figure 6.

In particular, Figure 6a shows the point-cloud (the result of Step 1),
Figure 6b shows the binary array (the result of Step 2), Figure 6c shows
the protein array (the result of Step 3), Figure 6d shows the binary
array called PB (the result of Step 4), Figure 6e shows the boundary
fence array (the result of Step 5). As observed in Figures 6a-e, the outer
and inner segments become distinguishable due to the application of
the Steps 1-5 in a successive manner. A physical model has also been
manufactured by an additive manufacturing equipment (a 3D printer),
as shown in Figure 6f. In doing so, the outer concave hull shown in

Figure 6e has been used to generate the STL data. The STL data
generating process can be found in [16].

This case study clearly demonstrates that the presented concave
hull generation procedure is useful means to handle complex shapes
for the sake of manufacturing their physical models.

Concluding remarks
Fractal geometry has extensively been used to quantify the

complexity and normality/abnormality of the shapes observed in the
living organisms (e.g., cell, tissue, lung, blood vassals, brain structures).
These shapes are primarily represented by point-clouds having
internal and external boundary fences (concave hulls). The extraction
of these boundary fences is not an easy task. This study sheds some
lights on this issue by proposing a simple but effective concave hull
generating procedure where an in silico DNA-Based Computing plays
an important role. It is demonstrated that the proposed concave hull

Figure 5. Significance of boundary fence array.

Figure 6. A case study of concave hull generation and physical model building.

Figure 4. Significance of PB.

Mapping Mapping Sets (i)
Parameters 1 2 3 4 5 6 7

ai 0.5 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333
bi -0.2887 0 0 0 0 0 0
ci 0.28868 0 0 0 0 0 0
di 0.5 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333
ei 0 0.57735 0 -0.5774 -0.5774 0 0.57735
fi 0 0.33333 0.66667 0.33333 -0.3333 -0.6667 -0.3333

Table 2. Settings of IFS.

Sharif Ullah AMM (2016) Creating concave hull for IFS fractals using DNA-based computing

 Volume 2(1): 129-133Fractal Geometry and Nonlinear Anal in Med and Biol, 2016 doi: 10.15761/FGNAMB.1000122

generating procedure is able to create the outer boundary fence of a
fractal (i.e., point-cloud created by an IFS) in a lucid manner. Further
study can be carried out to generate the inner concave hulls of IFS
fractals. Nevertheless, to get benefited from the capability of additive
manufacturing in producing complex shapes having biomedical
significance, the studies similar to this one must be continue in the
years to come.

References
1.	 Global Diabetes Plan 2011-2021. International Diabetes Federation, Belgium.

2.	 American Diabetes Association; National Heart, Lung and Blood Institute; Juvenile
Diabetes Foundation International; National Institute of Diabetes and Kidney Disease;
American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular
disease, 1999, Circulation, 100: 1132-1133.

3.	 Kudat H, Akkaya V, Sozen AB, Salman S, Demirel S, et al. (2006) Heart rate variability
in diabetes patients. J Int Med Res 34: 291-296. [Crossref]

4.	 Tarvainen MP, Cornforth DJ, Kuoppa P, Lipponen JA, Jelinek HF (2013) Complexity
of heart rate variability in type 2 diabetes - effect of hyperglycemia. Conf Proc IEEE
Eng Med Biol Soc 2013: 5558-5561. [Crossref]

5.	 Mirza M, Lakshmi ANK (2012) A comparative study of Heart Rate Variability in
diabetic subjects and normal subjects. International Journal of Biomedical and
Advance Research 3: 640-644.

6.	 Task Force of the European Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996. Heart rate variability: standards of measurement,
physiological interpretation, and clinical use. Circulation 93: 1043-1065.

7.	 Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, et al. (1999)
Multifractality in human heartbeat dynamics. Nature 399: 461-465. [Crossref]

8.	 Smith RL, Wathen ER, Abaci PC, Bergen NHV, Law IH, et al. (2009) Analyzing
Heart Rate Variability in Infants Using Non-Linear Poincare Techniques. Computer in
Cardiology 36: 673-876.

9.	 Stanley HE, Amaral LA, Goldberger AL, Havlin S, Ivanov PCh, et al. (1999) Statistical
physics and physiology: monofractal and multifractal approaches. Physica A 270: 309-
324. [Crossref]

10.	Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:
82-87. [Crossref]

11.	 Baumert M, Javorka M, Seeck A, Faber R, Sanders P, et al. (2012) Multiscale entropy
and detrended fluctuation analysis of QT interval and heart rate variability during
normal pregnancy. Comput Biol Med 42: 347-352. [Crossref]

12.	Rhaman Md, Karim AHM, Hasan M, Sultana J (2013) Successive RR Interval Analysis
of PVC with Sinus Rhythm Using Fractal Dimension, Poincare Plot and Sample
Entropy Method. I.J Image, Graphics and Signal Processing 2: 17-24.

13.	Hurst HE, Black RP, Sinaika YM (1965) Long-term Storage in Reservoirs: An
experimental Stud, Constable, London.

14.	Gospodinov M, Gospodinova E (2005) The graphical methods for estimating Hurst
parameter of self-similar network traffic. International Conference on Computer
Systems and Technologies pp. IIIB.19-1-IIIB.19-6.

15.	Gospodinova E, Gospodinov M, Georgieva-Tsaneva G, Cheshmedjiev K (2015)
Spectral analysis of heart rate variability. International Conference AUTOMATICS
AND INFORMATICS, Bulgaria, Sofia, pp 95-98.

16.	Dey N, Das A, Chaudhuri SS (2012) Wavelet Based Normal and Abnormal Heart
Sound Identification Using Spectrogram Analysis. International Journal of Computer
Science & Engineering Technology 3.

17.	Dey N, Samanta S, Yang SH, Chaudhri SS, Das A (2013) Optimisation of Scaling
Factors in Electrocardiogram Signal Watermarking using Cuckoo Search. International
Journal of Bio-Inspired Computation 5: 315-326.

18.	Mukherjee A, Dey G, Dey M, Dey N (2014) Web-based Intelligent EEG signal
Authentication and Tamper Detection System for Secure Telemonitoring. Published
by Brain-Computer Interfaces: Current Trends and Applications by Springer-Verlag,
Germany, 2014.

19.	Nandi S, Roy S, Dansana J, Karaa W, Ray R, et al. (2014) Cellular Automata based
Encrypted ECG-hash Code Generation: An Application in Inter-human Biometric
Authentication System. International Journal of Computer Network and Information
Security 11: 1-12.

20.	Gospodinova E, Gospodinov M, Domuschiev I, Nilianjan Dey, Ashour AS, et al.
(2015) Analysis of Heart Rate Variability by Applying Nonlinear Methods with
Different Approaches for Graphical Representation of Results. International Journal
of Advanced Computer Science and Applications 6: 38-45.

21.	Acharjee S, Dey N, Samanta S, Das D, Roy R, et al. ECG Signal compression using
Ant Weight Lifting Algorithm for Tele-monitoring. Journal of Medical Imaging and
Health Informatics [In - press]

Copyright: ©2016 Humeau-Heurtier A, Bianciardi G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

http://www.ncbi.nlm.nih.gov/pubmed/16866023
http://www.ncbi.nlm.nih.gov/pubmed/24110996
http://www.ncbi.nlm.nih.gov/pubmed/10365957
http://www.ncbi.nlm.nih.gov/pubmed/11543220
http://www.ncbi.nlm.nih.gov/pubmed/11538314
http://www.ncbi.nlm.nih.gov/pubmed/21530956

	Title
	Correspondence
	Abstract
	References

