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Abstract
The paper presents the development of a new biophysical and computational basis for understanding the non-linear mechanisms of the electrocardiogram (ECG) 
generation. The ECG is a global scale mass potential which arises from coordinated electrical activity of cardiomyocytes. The multiplicity of cellular processes with 
extremely intricate mixtures of deterministic and random factors prevents the creation of consistent biophysical models linking global scale ECG with underlying 
sources of electricity. Consequently, significant aspects of the chaotic dynamics and fractal properties of the heart electrical activity may be hidden in the time 
course of the ECG components. To test this proposition, we undertake here a radical departure from deterministic equations of classical physics to the probabilistic 
reasoning of quantum mechanics. A Crucial step consists in the relocation of elementary bioelectric sources from the cellular to molecular level. The corresponding 
particle model is formulated in terms of a nonhomogeneous birth-and-death process (BDP). Using empirical characteristic functions, we found the global scale 
solution in the form of a limit distribution function composed from two Gaussian components. This finding discloses the two particle populations associated with 
the source and sink of the dipole producing the ECG component waveform. On the global scale the corresponding system is described by the system of non-linear 
differential equations. At the microscopic scale the particle movements are governed by probabilistic laws which we reduce to the rules that define the birth and death 
rates under the resting and transient conditions. Computer simulations revealed that transition from the resting to transient conditions is characterized by appearance 
of the deterministic chaos. We term this kind of behavior the “transient deterministic chaos”. Statistical regularities producing the transient deterministic chaos 
remain invariant for different cellular ensembles. This fractal property supports the statement of statistical self-similarity of ECG constituents. 
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Introduction
The ECG is one of the most efficacious tools in cardiology the 

diagnostic power of which is supported by remarkable correspondence 
of various patterns of ECG component waveforms with different normal 
and pathological conditions of the heart. Diagnostic criteria depend on 
measurements of timings and amplitudes of component waveforms. 
A critical limitation of these procedures is that reduction of an ECG 
signal to its samples at isolated time points is unable to characterize the 
waveform dynamics. Meanwhile a great deal of experimental evidence 
indicates that more detailed morphological waveform analysis may 
expand understanding of the ECG, making this already useful measure 
even more informative in scientific and clinical settings. 

 Among the wide variety of quantitative approaches to this problem 
the nonlinear dynamics, fractals and chaos received considerable 
attention as potential tools to bridge the randomness and determinism 
in the mechanisms of ECG generation [1]. 

Due to apparently irregular character of heartbeat rhythms, 
heart rate variability (HRV) became a major empirical measure 
for investigating the chaotic nature of the heart’s electrical activity. 
Various methods of nonlinear dynamical analysis including the 
evaluation of fractal scaling exponents, correlation dimensions, power 
spectra, Lyapunov exponents and detrended fluctuation analysis have 
been employed to investigate dynamic trends of erratic time series of 
HRV. Reviews of major results indicate that the variations of inter-beat 
intervals exhibit a number of characteristic features of deterministic 
chaos [2,3].

 This study exploits the fact that ECG components are global scale 
mass potential produced by collective behavior of closely located 
cardiomyocytes. Since millions of cells participate in these processes, 
it is widely accepted that the dynamics of ECG waveforms reflects 
summary effects of processes taking place at the microscopic scale. 
Thus, we may expect that significant aspects of chaotic dynamics and 
fractal properties of the heart electrical activity are hidden in the time 
course of the ECG components. 

Our goal is to uncover and reconstruct major dynamic and 
stochastic regularities of cellular processes hidden in the time course of 
ECG waveforms. Using probabilistic formalism of quantum mechanics 
we introduce a particle model of ECG generation which bridges 
global scale ECG components with underlying elementary sources of 
electricity. Identification of the model parameters on empirical grounds 
provides means to reconstruct in computer simulations microscopic 
events underlying ECG generation. 

Particle model of ECG generation
ECG resembles electrical phenomena occurring in ensembles of 
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multiple cardiomyocytes immersed in an interstitial fluid. Elementary 
bioelectric sources acting at the microscopic scale are ions, both 
positively and negatively charged particles, which cross the cell 
membrane in both directions. The cell membranes have high resistance, 
compared with the resistance of the extracellular space [4]. Thus, the 
membranes serve as a separating material that divides the muscle 
tissue into extracellular and intracellular compartments. Because little 
current from extracellular sources flows through the cell membrane the 
dipoles associated with the ECG constituents are produced by specific 
ensembles of extracellular ions. 

 After release from the cell, extracellular ions have a possibility 
to cross the membrane in the opposite direction, i.e., to return to the 
interior of the cell. Balanced ion transport lacks significant power to 
produce measurable changes in potential differences between various 
spatial locations in the external media. An event that disturbs this 
balance and has potential to produce a waveform deflection at the 
global scale is a transient synchronization of ion flows across cellular 
membranes of large ensembles of closely located cardiomyocytes. Such 
complex events occur in a sequential order during the cardiac cycle and 
may be associated with different ECG components. 

 Given the multiplicity of molecular mechanisms underlying 
ECG generation, we need to avoid detailed description of the internal 
processes acting on the microscopic scale. For a solution we refer to 
the formalism of quantum mechanics addressed to a wide variety of 
systems in nature that can be regarded as many-particle ensembles 
with extremely intricate dynamics of their elements [5]. Such systems 
are typically formed of huge ensembles of particles, with essentially 
erratic motion, so a description of the individual elements is really 
hopeless. However, this is not necessary in practical terms because 
only cumulative effects are expressed in the global scale variables. At 
this level, details of the individual particle motions are averaged – only 
the mean characteristics are essential for a description of the global 
scale dynamics. This is a cornerstone of the indeterminacy principle in 
quantum mechanics [5]. 

 A classic example is Brownian motion which portrays the 
macroscopic picture emerging from randomly moving particles 
[6]. On the microscopic level, at any time step, the particle receives 
a random displacement, caused by other particles hitting it or by an 
external force. Different models of particle collective behavior have 
been developed for various physical applications in such fields as gases, 
fluids, superfluids, electrons and ions in conductors, semiconductors, 
plasma, nuclear matter in neutron stars, etc [7].

For the problem in question, we need to describe the temporal 
evolution of the size of the external particle population related to 
the transport processes between the extracellular and intracellular 
particle compartments. We address this problem using the theoretical 
framework of previous modelling studies of the short-term synaptic 
plasticity in which the “birth-and-death” process (BDP) has been 
settled as a tool for analysis of transmembrane particle transfers [8,9]. 
The membrane is considered as a boundary that separates the internal 
and external particle compartments. We regard crossing the membrane 
by an ion as an elementary event interpreted as the birth or death of a 
particle producing a unit increase or decrease of the population size. 

Since particle movements are governed by probabilistic rules, we 
measure the size of relevant extracellular particle population at time 
t by integer-valued random variable X(t) (boldface letters denote 
random variables). From a variety of BDP models we choose the 
nonhomogeneous BDP in which the birth and death rates λ(t) and μ(t) 

may be any specified functions of the time t [10]. 

 Since inter-state transitions are governed by probabilistic laws, the 
future of BDP is not uniquely determined. A major condition is that 
during a sufficiently small element of time, Δ, the probability of the 
change of the X(t) by more than one particle is negligibly small:

 ( ) ( ) ( ) ( )Pr[ ] if 1, 1t t k o k+ ∆ = + = ∆ >X X                  (1)

where Pr denotes probability and k is an integer.

Therefore, the particle system changes only through transitions 
from states to their nearest neighbours. An increase of the population 
size by a unit represents the birth, ( ) ( ) 1t t+ ∆ = +X X , whereas 
a decrease by a unit represents the death, ( ) ( ) 1t t+ ∆ = −X X . The 
probabilities of these events for nonhomogeneous BDP are [11]: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )Pr Δ 1 λ Δ Δ birth 2t t t t o+ = + = +  X X X                 (2)
 ( ) ( ) ( ) ( ) ( ) ( ) ( )Pr Δ 1 μ Δ Δ death 3t t t t o+ = − = +  X X X                 (3)

where λ(t) and µ(t) are the birth and death rates, respectively. 

  The expected population size related to these microscopic events 
is defined by the integral equation [11]

 
( ) ( ) ( ) ( )

0

e exp μ λ 4
t

t dξ ξ ξ
 

= − −   
 
∫ 	              (4)

This is an average of X(t) variables measured in different trials, 
i.e. the limiting behavior of a large number of random events. In this 
probabilistic context we regard e(t) as a distribution function. 

Characteristic functions of ECG components
The frequency domain counterpart of distribution function is 

the characteristic function defined by the Fourier transform [12]. 
Retaining all the information possessed by distribution function, 
characteristic function has been appreciated as an effective tool for 
numerical manipulations with empirical data [13]. The method of 
empirical characteristic function developed on this conceptual basis is 
widely favored in the time series analysis of stationary processes [14].   

 A new feature we add to the method is that the signal in question, 
i.e., the ECG, is a non-stationary process produced by a number 
of sources. We use the method of fragmentary decomposition 
as theoretical and computational tool which provides means 
to decompose a non-stationary bioelectric signal into the set of 
functionally meaningful components [15]. We regard such component 
as an empirical distribution function produced by nonhomogeneous 
BDPs and defined by equation (4). 

Non-stationary ECG v(t) submitted to the fragmentary 
decomposition is conditioned to form the time series 

[ ]Mm0 v,...,v,...,v=v , where vm=v(tm), tm=mΔ, m is an integer, M is 
the number of samples and Δ is the sampling interval. Fragmentary 
decomposition starts from the adaptive segmentation procedure. 
The objective is to estimate segmentation points which define EEG 
fragments associated with functional components in the form of 
peaking waveforms. The segmentation points are defined as zero-
crossings and points of global and local minimums of the modulus of v(t). 

More particularly, if

( ) ( )m-1 1 1 m 1v 0 AND v 0 OR v 0 AND v 0m m+ − +≤ > ≥ <

then τi =tm is qualified as zero-crossing (segmentation point), 
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where i is the number of segmentation point.

  The point τi =tm (i is the number of segmentation point) specifies 
a global or local minimum of v if 

m 1 m m 1v v v− +≥ ≤
A sequence of segmentation points I0 ,..., τττ ,...,i  is so formed. 

Figure 1 shows an example of adaptive segmentation with zero-
crossings illustrated in vertical red lines and minimums illustrated in 
vertical blue lines. 

 Given ECG fragment of the length Ti = τi+1-τi between the 
segmentation points τi and τi+1 (i=0,…,I-1), we define empirical 
distribution function as wi(t)=v(t+τi) where t takes values from 0 to Ti. 
The corresponding empirical characteristic function is defined by the 
exponential finite Fourier integral

 
( ) ( ) ( ) ( )

0

W ( ) W exp δ w ( )exp 5
iT

i i i ii i t i t dtω ω ω ω= − = −   ∫                   (5)

where Wi(ω) is the amplitude spectrum (AS), δi(ω) is the phase 
function (PF), ω=2πf, f is frequency and i=√-1. Since the treatments of 
the frequency characteristics are universal, the subscripts are omitted 
in the following text.

Integrals of the type (5) deal with relatively short ECG segments 
of different lengths. The most readily available technique of digital 
spectral analysis using the fast Fourier transform is not suited for short-
time spectral analysis. As an adequate tool for numerical calculations of 
finite Fourier integrals (5) we use the similar basis function algorithm 
[16], an original version of Filon-type methods that provide maximum 
precision in the numerical estimation of trigonometric integrals.

The complex spectrum (5) is fully defined by the real valued W(ω) 
and δ(ω). According to the fragmentary decomposition method the 
AS of a functionally meaningful component is adequately expressed by 
Gaussian function.

We examined this proposition using standard 12 lead ECGs of 
healthy subjects from the two sources. First, records for a group of 14 
healthy subjects (7 males and 7 females; age 22-62 years, mean 38.6 
years) from the outpatient cardiac clinic of the Macquarie University 
(Sydney, Australia). Second, records of 7 males and 7 females (age 22-
58 years, mean 39.9 years) from the group of healthy subjects in the 
PTB diagnostic ECG database [17,18].

  As empirical characteristic we used to test the “Gaussianity” was the 
normalized AS ( ) ( ) ( )*W W W 0ω ω= . The fits of analytical Gaussian 

functions to numerous numerically calculated spectra indicate striking 
resemblance of empirical W*(ω) with the analytical function

 ( ) ( ) ( ) ( )2exp 2 , AS 6ω σω Ψ = −  	                                  (6)

where σ is a parameter. 

Typical result is illustrated in Figure 2. The vertical dotted lines 
in Figure 2a show the ECG fragment chosen for identification. 
Functionally, it corresponds to the T wave. The blue line in Figure 2b is 
the normalized AS W*(ω) computed from this fragment. The red line 
shows the fit of the Gaussian template (6) with σ=25.6 (ms). 

Similar results of the spectral analysis applied to the 5 fragments (P, 
Q, R, S and T waves) of the ECG in Figure 3a are illustrated in Figure 3b.  

General form of Ψ(ω) is characteristic for a low pass filter 
conventional parameter of which is the cut-off frequency FC. At this 
frequency the attenuation of the AS drops by 3dB, i.e.  ( )CW* 2πF 1 2= . 
The arrow in Figure 2b shows such defined frequency Fc=5.25 Hz. 

Using FC, we define the AS normalized by both the amplitude and 
frequency as

Figure 1. Illustrates adaptive segmentation of ECG record. Vertical lines indicate 
segmentation points.

Figure 2.a. The vertical dotted lines indicate ECG segment (T wave) submitted to the 
spectral analysis. b. The blue line is AS of the T wave computed by the similar basis 
function algorithm. The red line is Gaussian template with σ=25.6 (ms). The curves of 
empirical AS and template are stuck together at FC=5.25 Hz. This frequency is indicated by 
the arrow. c. Comparison of the PF (blue line) with linear regression line computed over 
the frequency range from 0 to FC. The arrow shows this frequency on the natural frequency 
scale.
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 ( ) ( )*Z W 2 , Cν Fπν=
 where ν=f/FC is dimensionless normalized frequency.

Given (6) as the model of W*(ω), an expected form of Z(ν) is the 
Gaussian spectrum defined as

( ) ( ) ( )2G exp 7  ν ν= − 				                  (7)

Using G(ν) as a template, Figure 3c exemplifies typical results of 
sticking together Z(ν) and G(ν) at ν=1 which corresponds to ω=2πFC. 
The frequency FC estimated from this condition defines  Cln 2 2πFσ = .  

To test the adequacy of such fits we define FB as the boundary 
frequency below which the mean square error between Ψ(ω) and 
W*(ω) does not exceed an empirically established threshold ε=0.0002. 
Using FB we evaluate dimensionless extension coefficient kE=FB/FC the 
values of which for ECG components from Figure 3a are presented in 
the Table 1. For the R waves of ECGs from 14 healthy subjects we found 
the following kE ranges. (1) Outpatient cardiac clinic: from 1.91 to 3.16 
(mean 2.49). (2) PTB database: from 1.82 to 3.63 (mean 2.46).

Similar results documented for different ECG components from 

various leads and subjects indicate random fluctuations of kE and an 
erratic character of the spectral components above FB. This allows us to 
regard W*(ω) as the sum of Ψ(ω) and a random component produced 
by different artefacts. In this context equation (6) defines expected 
form of AS. 

With regard to the phase components, the tests revealed the 
condition under which numerically computed phase function δ(ω) 
shows consistency with a simple linear model 

( ) ( ), 8φ ω βω= 				                   (8)

where β is parameter.

We found that if kE >1.5, the numerically computed PF δ(ω) only 
slightly deviates from linearity over the frequency range from 0 to FC. 
Typical result is illustrated in Figure 2c where the arrow indicates Fc.

Thus the estimation of β is reduced to the calculation of linear 
regression lines using δ(ω) samples from the [0, ωC] interval. The slope 
of the regression line serves as the estimate of β. 

Nonlinear dynamics of ECG components
Approved analytical dependencies (6) and (8) define the complex 

spectrum

( ){ }2( ) exp 2i iω σω βω Ψ = − − 
the time domain counterpart of which may be regarded as a generic 
model of ECG component. 

Since we deal with the casual process, either the real or imaginary 
part of Ψ(iω) is sufficient to find its the time domain counterpart ψ(t), 
i.e. the time domain model of w(t) [19]. Using the imaginary part, we 
define the model at t>0 by the sine Fourier transform 

 
( ) ( ) ( )2

0

2ψ( ) exp 2 sin sin .t t dσω βω ω ω
π

∞

 = − ∫
This integral has an analytical solution [20] 

 ( ) ( ) ( )R Sψ ψ ψ , (9)t t t= − 			               (9)

where
 ( ) ( ) ( )

1 2 2
Rψ ( ) 2 exp 2 1 ,t t tσ π β σ

−
 = − − ⋅ 

 ( ) ( ) ( )
1 2 2

Sψ ( ) 2 exp 2 1 ,t t tσ π β σ
−

 = − + ⋅ 
1(t) is a unit step function.

At t>0 equation (9) is consistent with the wave function in a general 
form of the d’Alembert’s solution [21]. In this context, the process 
described by equation (9) may be regarded as an impulse response 
of a dynamic system governed by the following system of nonlinear 

Figure 3.a. The black line illustrates typical human ECG recorded from the lead II. 
Conventional components represent succession of P, Q, R, S and T waves.  Colored lines 
are model components drawn according to equation (9) with the parameters κ, σ and β from 
Table 1. b. Shows the ASs of P, Q, R, S and T waves from Figure 1a. c. Colored lines are the 
ASs from b after normalization of both the amplitude and frequency. The black line shows 
the Gaussian function (7).

κ Σ β Fc kE

μV Ms ms Hz RU
P 4.13 21.1 52.4 (0.0202) 6.31 2.29
Q -3.45 6.93 15.1 (0.039) 19.1 2.09
R 9.73 5.02 11.4 (0.00111) 26.3 2.09
S -4.01 5.5 10.8 (0.0185) 24 2.09
T 5.5 24 70.1 (0.183) 15.8 2.63

Parameters κ, σ, β, FC and kE were identified for each of P, Q, R, S and T ECG components 
shown in Figure 1a. Values of kE are in relative units (RU).

Table 1. Parameters of ECG components.
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differential equations:
 ( ) ( ) ( )2

R Rψ ψt t tβ σ = − 

 ( ) ( ) ( )2
S Sψ ψt t tβ σ = − +           		            (10) 

ψ  ( ) ( ) ( )R Sw ψ ψt t t= −      

where  ( ) ( )R Sψ and ψt t   denote the derivatives of  ( ) ( )R Sψ and ψt t , 
respectively.

The form of these equations allows us to qualify the system as a 
non-autonomous system, that is, a system driven by time-varying 
signals. 

Function ψ(t) as well as equations (10) are fully determined by 
the results of the frequency domain identification of AS and PF which 
provide the values of the parameters σ and β. Taking an additional 
parameter κ=W(0), we regard κψ(t) as a voltage between the poles 
of an extracellular dipole. The red line in Figure 2a illustrates the T 
component computed on this basis. Using parameter values from the 
Table 1, the colored lines in Figure 3a illustrate analytical solutions (9) 
obtained for P, Q, R, S and T components. 

With regard to the component composition of equation (9), we 
consider ψR(t) and ψS(t) as the source and sink elements of the dipole 
associated with the underlying particle populations “R” (Resource) and 
“S” (Sink), respectively. 

Microscopic origins of ECG components
The next question to consider is how elementary sources acting at 

the microscopic level produce global scale transients (9). To specify 
the birth and death rates in terms of σ and β parameters, we refer to 
equations (1)-(3). We regard the reference point t=0 as the time instant 
from which the BDP transfers from the resting conditions governed 
by the constant birth and death rates λR, μR, λS and μS to the transient 
conditions governed by the time dependent birth and death rates λR(t), 
μR(t), λS(t) and μS(t).

To describe transient behavior of the population R we replace 
λ(ξ) and μ(ξ) by specified functions λR(ξ) and μR(ξ), respectively. 
Accordingly, e(t)=ψR(t). Using unique solution of equation (4) for these 
conditions, we deduce the following rules that govern the transient 
behavior of the sub-population R:

 ( ) ( ) ( ) ( )2 2
R Rλ , μ 0 11t t t tβ σ σ= = ≥                               (11)

To apply similar deductions to the population S, we replace λ(ξ), 
μ(ξ) and e(t) by λS(ξ), μS(ξ) and ψS(t), respectively. The corresponding 
solution of equation (4) provides the following rules that govern the 
transient behavior of sub-population S:

 ( ) ( ) ( ) ( ) ( )2
S Sλ 0, μ 0 12t t t tβ σ= = + ≥                             (12)

Constant birth and death rates for resting conditions are derived by 
exclusion the time t from (11) and (12). Thus, the rules for the resting 
conditions are as follows. 

Sub-population R: 

 ( ) ( )2
R Rλ , μ 0 0 13tβ σ= = < 		                                  (13)

Sub-population S: 
 ( )2

S Sλ 0, μ 14β σ= = 			                              (14)

Disclosure of these probabilistic rules provides means to move 
from the global scale descriptions of the particle populations in 

terms of characteristic functions to numerical simulations of particle 
populations at the microscopic scale.

The number of particles X(t) in particular trial is computed step 
by step for consecutive points ( ),..,0,..,it i i M N= ⋅∆ = − , where Δ is 
a small element of time. The corresponding time series is presented by 
the discrete samples i( )ix t= X . The time point t0 is taken as an instant 
at which the resting conditions are switched to the transient conditions.

The choice of Δ is made in compliance with condition (1) which 
states that during a sufficiently small element of time Δ, the probability 
of a change in the population size by more than one element is negligibly 
small. Consequently, permitted size of the particle population at the 
time ti+1 is: xi+1=xi+1 (birth), xi+1=xi (unchanged size) or xi+1=xi-1 (death). 

The probabilities of such inter-state transfers are expressed by 
equations (2) and (3) which we rewrite in the following form:

 [ ] ( ) ( )1 bPr 1 p Δ ,i ix x i o+ = + = +

 [ ] ( ) ( )1 dPr 1 p Δ ,i ix x i o+ = − = +

where pb(i) and pd(i) are the probabilities of a particle birth and death, 
respectively, in the time interval from ti to ti+1. 

Under the resting conditions which persist until ti<t0, the R and 
S particle sub-populations behave as simple BDPs with the birth and 
death rates defined by equations (13)- (14) .

Thus we obtain the following probabilities of the birth and death of 
a particle in [ ]1,i it t +  interval (i=-M,..,-1): 

Sub-population R:  ( ) ( ) ( )2
b i dp β , p 0 15i x iσ= ∆ =                 (15)

Sub-population S:  ( ) ( ) ( )2
b d ip 0, p . 16i i x β σ= = ∆ 	                (16)

Under the transient conditions induced at the time instant t0 the 
particle populations develop as non-homogenous BPDs with the birth 
and death rates defined by equations (11)-(12). The corresponding 
probabilities of the birth and death in [ ]1,i it t +  interval

 (i=0,…,N-1) are: 

Sub-population R: ( ) ( ) ( )2 2 2
b i d ip , p . 17i x i x iβ σ σ= ∆ = ∆  

Sub-population S: ( ) ( ) ( ) ( )2
b d ip 0, p . 18i i x i β σ= = ∆ ∆ +

We organized the calculations as the succession of standard steps 
dealing with the time intervals[ ] ( )1, ,..,0,.., 1i it t i M N+ = − − . Given 
the step beginning from ti, the xi serves as the initial condition. The 
value xi+1 which X(t) takes at the end of the interval is computed using 
Monte Carlo simulations. 

The procedure for each step is as follows:

(1)	 Estimate probabilities pb(i) and pd(i) using equations (15)-
(16) for the steady-state conditions and equations (17)-(18) for the 
transient conditions. 

Pick out random real numbers db and RR using a random number 
generator to produce real numbers in the range from 0 to 1.

Estimate the size of the particle population at the end of the interval: 

i 1 i ,x x b d+ = + −  

where db and are binary numbers defined as follows:

 ( )b b1 ifb R p i= < and is zero otherwise,

( )d d1 ifd R p i= <  and is zero otherwise.
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Numerical experiments have been supported by a specially 
designed computer program written by the first author in the object 
Pascal language of Embarcadero Delphi 2010. 

Transient deterministic chaos 
Using the algorithmic framework for Monte Carlo simulations, our 

goal was the reconstruction of the microscale origins of the global scale 
equation (9). Thus, we deal with temporal developments of particle 
numbers XR(t) and XS (t) in different trials. The number of particles 
producing a dipole is defined as XD(t)= XR(t)- XS (t).

To perform simulations, it was important to choose the value of 
Δ under which the probabilities pb(i) and pd(i) are low enough to be 
consistent with the condition (1). Based on a number of numerical 
experiments with different parameters, the value Δ=0.0001 ms was 
selected for numerical simulations illustrated in figures 4 and 5. The 
segmentation points were ti=i∙Δ with i taking values from -2∙105 to 3∙105. 
The corresponding time interval extended from -20 to 30 ms with t=0 
corresponding to the switch from the resting to transient conditions. 
The values of the parameters σ and β were taken from the Table 1 for 
the component R. Thus, σ=5.02 ms and β=11.4 ms. 

As an initial condition, an equal size N0=20 was prescribed to both 
sub-populations. The particle population sizes in Figure 4a and Figure 5 
are expressed in relative units, i.e. 

( ) ( ) ( )* * *
R R 0 S S 0 D D 0( ) N , ( ) N and ( ) Nt t t t t t= = =X X X X X X .

Typical single trial trajectories of the sub-population sizes are 
illustrated in Figure 4a for the source and sink. The underlying 
probabilities of the birth and death events are shown in Figures 4b and 4c. 

At t<0 the development of particle populations is governed by 
constant birth and death rates defined by formulas (13)-(14). Thus, 
we deal with simple BDP. Accordingly, for each sub-population the 
probabilities of the birth and death are identical in the time interval 
from -20 ms to 0. The differences between different trials have purely 
statistical origins. This type of behaviour is free from deterministic 
trends, i.e. we deal with stationary stochastic processes.

The transition from the resting to transient condition was simulated 
as the change of the constant rates of the birth and death to the time 
dependent rates (11)-(12). The change occurs in a “smooth” fashion. 
This means that the sizes of the particle sub-populations developed 
under the resting conditions serve as initial conditions for the transient 
regimes. 

At t>0 the probability of the birth in the sink sub-population is 
zero. Thus, as seen from Figure 4a, the transient conditions lead to a 
relatively fast flow of particles from external compartment to internal 
compartment.

In contrast, the size of the source sub-population is governed 
by the complex interplay of the birth and death probabilities. Onset 
of the transient conditions gives rise to both probabilities. Initially, 

Figure 4. a. Illustrates temporal evolution of the source and sink particle populations in 
typical trials. Resting conditions computed from -20 ms are switched at t=0 to the transient 
conditions. b, c. Illustrate the birth and death probabilities drawn according to equations 
(15) – (18).

Figure 5. Solid lines illustrate typical changes of population sizes in single trials. The 
dotted lines are the averages of 5 arbitrary selected single trial records.
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the birth probability prevails over the death probability. During this 
process the size of the source sub-population increases and reaches the 
maximum at approximately t=12.8 ms. The succeeding developments 
show dominance of the death probabilities. As the result, the size of the 
source sub-population declines and returns to the resting conditions. 
Thus, under the transient conditions an erratic particle behavior is 
strongly influenced by deterministic trends. We deal with deterministic 
chaos.    

The population sizes of the source and sink from Figure 4a are 
redrawn and separately shown in Figure 5a (blue line) and Figure 5b 
(red line). The black line in Figure 5c is the sum of these populations. 
The mixture of stochastic and deterministic components of these 
processes at t>0 is a characteristic feature of deterministic chaos. 

In order to compare consistency of computed single trial trajectories 
with the global scale deterministic solutions (9) we need to estimate 
the limiting behavior of the particle populations. A useful approach 
to disclose the expected trajectories is averaging. The dotted lines in 
Figure 5 show the averages of 5 single trial processes. Obviously, these 
procedures reduce variability and bring simulation results to a better 
proximity with expected trends. 

To support precise comparisons we need to set up equal numbers 
of particles in both the source and sink populations at the time t=0 
from which the transients evolve. To realize this condition we start 
simulations from t=0.

The blue lines in figures 6 a, b and c exemplify ( )*
D tX in single 

trials computed for particle population with 10, 50 and 100 particles. 
The red lines in Figure 5 show the averages of 5 single trial realizations 
from each particle population. Comparison of these statistical averages 
with the black lines (function ψ(t) with corresponding parameters) 
shows that increase of the particle numbers makes single trial samples 
indistinguishable from the theoretical solution. This is convincing 
evidence of the deterministic chaos hidden in the time course of the 
global scale ECG. Due to a temporary appearance of this effect, we 
name the uncovered mixture of deterministic and stochastic processes 
the “transient deterministic chaos”.

Statistical self-similarity of ECG components 
The Mandelbrot concept of a fractal is most often associated with 

objects satisfying criterion of self-similarity which means that an object 
is composed of similar sub-units that resemble the structure of the 
whole object [22]. The theory and numerical simulations presented in 
this paper provide evidence of common statistical and deterministic 
rules that govern generation of ECG functional components from 
different ensembles of multiple cardiomyocytes. For example, Figure 6 
illustrates similar global scale effects produced by particle populations 
containing different numbers of particles. This means that cellular 
ensembles may be divided into the constituent parts governed by the 
same probabilistic and deterministic rules as the whole ensemble. We 
summarize this outcome as the following statement of the statistical 
self-similarity of ECG constituents.

 Statistical self-similarity statement: Consider function ψ(t) 
with σ and β parameters as the model of ECG component generated 
by synchronous activation of a large ensemble L of closely located 
cardiomyocytes. Let us extract a part of L regarded as an ensemble S. 
We state that the global scale effect produced by the S is fully expressed 
by the changes in the values of σ and β parameters while the form of 
analytical function ψ(t) remains invariant. 

This statement differs drastically from conventional deterministic 
treatments which regard membrane potentials as “building blocks” the 
linear summation of which produces a global scale ECG [23]. Suppose 
that the membrane potential is described by a certain function with 
M parameters. Linear summation of the effects produced by J cells 
must take into account the parameters of J functions and contain 
JM free parameters. Given that millions of cells participate in the 
ECG generation, this is a highly under-determined task. Actually, the 
large number of details and free parameters delivered to the linear 
summation can often obscure rather than illuminate the essentials of 
the underlying events. 

In contrast, a compact set of σ, β and κ parameters accumulates 
all essential aspects of the underlying events at the microscopic scale 
without changes to the general form of analytical ψ(t). This constitutes 
the basis for consideration the samples of the transient deterministic 
chaos as fractal objects.

Figure 6. Compares theoretical solutions with the results of computer simulations of the 
particle models. The black lines show theoretical solutions drawn according to equation (9) 
with parameters σ and β from Table 1 for the R component. Blue lines exemplify ( )t*

DX
computed for different particle populations. The red lines are the averages of 5 single trials.
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Discussion
The results of the identification the ECG components from various 

leads in different subjects can be summarized by stating that the time 
domain counterpart (9) of empirical frequency domain AS (6) and 
PF (8) can be regarded as a universal formula for a monolithic ECG 
waveform. The corresponding source is described by the system of 
non-linear equations (10).

Probabilistic interpretations of equation (9) in terms of the 
distribution function provided means to identify the two interrelated 
particle population as the sources of an extracellular dipole producing 
the ECG component waveform. Using non-homogenous BDP as a 
theoretical framework, the rules (11)-(14) governing the birth and 
death rates were deduced.

This probabilistic basis of our approach provided means to reduce 
an intractably huge number of the measures of heart electrical activity 
to a universal model of ECG component with the fewest parameters (σ, 
β and κ). Being limit distributions for the sums of random variables, 
these parameters discriminate those aspects of the molecular machinery 
that are significant on the global scale from those that are not. 

The removal of irrelevant variables is a crucial outcome of our 
radical departure from the superposition principle which interprets the 
ECG as a linear superposition of membrane potentials. Conceptually, 
we relocate the elementary sources of electricity from the cellular to the 
molecular  level. At this microscopic scale of bioelectric activities we 
deal with particle movements governed by the defined rules of the birth 
and death processes. The vanishingly small role of individual particles 
in the generation of global scale processes reduces the problem to the 
study of the limiting behavior of large numbers of independent random 
variables [24].                     

The most important probability distribution in this context is 
the normal (Gaussian) distribution because, in accordance with 
the central limit theorem, any process of random sampling tends to 
produce a normal distribution of sample values, even if the whole 
population from which the samples are drawn does not have a normal 
distribution. Single normal distribution is not suitable to account  of 
the temporal changes in the system from which the samples come. 
We regard empirically grounded appearance of two symmetric 
Gaussian functions in our model (9) as a solution which overcomes 
this limitation. It is difficult to escape the conclusion that ψ(t) may be 
regarded as a time dependent statistical distribution applicable to wide 
classes of physiological processes.

Computer simulations provided means to investigate the role of 
deterministic and stochastic factors involved into the ECG generation. 
An important finding is the difference between the resting and transient 
conditions. Under the resting conditions the particle movements 
across membranes are balanced and lack power to produce measurable 
changes of ECG waveforms. Mass potentials produced by these particle 
movements belong to the category of stationary stochastic processes. 

The component generation is triggered by some external signal. On 
the global scale this event is reflected by transient potentials the dynamics 
of which is perfectly described by equation (9). Phenomenologically, 
the global scale potential is generated by collective behavior of a 
large ensemble of cardiomyocytes. Using computer simulations we 
reconstructed transient potentials produced by small fragments of 
the large ensemble. The point that we do consider to be established 
is that potentials developing during transient conditions contain 
deterministic component and thus represent the mixture of stochastic 

and deterministic processes characteristic for the deterministic chaos. 
However the deterministic components are vanishingly small during 
the resting conditions. To take into account the changing statistical 
character of mass potentials we have introduced the notion of the 
transient deterministic chaos. 

Remarkable fractal property of the transient deterministic chaos 
follows from the invariance of the limiting statistical distribution 
(9) applied to different particle ensembles. Thus, a wide range of 
monolithic deflections identified in the time course of human ECG may 
be qualified as fractal entities related by the statistical self-similarity.

The principles presented here can be readily extended to many 
other types of biomedical signals, specifically electroencephalograms, 
and work in this direction is in progress.
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