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Abstract

The paper presents the development of a new biophysical and computational basis for understanding the non-linear mechanisms of the electrocardiogram (ECG)
generation. The ECG is a global scale mass potential which arises from coordinated electrical activity of cardiomyocytes. The multiplicity of cellular processes with
extremely intricate mixtures of deterministic and random factors prevents the creation of consistent biophysical models linking global scale ECG with underlying
sources of electricity. Consequently, significant aspects of the chaotic dynamics and fractal properties of the heart electrical activity may be hidden in the time
course of the ECG components. To test this proposition, we undertake here a radical departure from deterministic equations of classical physics to the probabilistic
reasoning of quantum mechanics. A Crucial step consists in the relocation of elementary bioelectric sources from the cellular to molecular level. The corresponding
particle model is formulated in terms of a nonhomogeneous birth-and-death process (BDP). Using empirical characteristic functions, we found the global scale
solution in the form of a limit distribution function composed from two Gaussian components. This finding discloses the two particle populations associated with
the source and sink of the dipole producing the ECG component waveform. On the global scale the corresponding system is described by the system of non-linear
differential equations. At the microscopic scale the particle movements are governed by probabilistic laws which we reduce to the rules that define the birth and death
rates under the resting and transient conditions. Computer simulations revealed that transition from the resting to transient conditions is characterized by appearance
of the deterministic chaos. We term this kind of behavior the “transient deterministic chaos”. Statistical regularities producing the transient deterministic chaos

remain invariant for different cellular ensembles. This fractal property supports the statement of statistical self-similarity of ECG constituents.

Introduction

The ECG is one of the most efficacious tools in cardiology the
diagnostic power of which is supported by remarkable correspondence
of various patterns of ECG component waveforms with different normal
and pathological conditions of the heart. Diagnostic criteria depend on
measurements of timings and amplitudes of component waveforms.
A critical limitation of these procedures is that reduction of an ECG
signal to its samples at isolated time points is unable to characterize the
waveform dynamics. Meanwhile a great deal of experimental evidence
indicates that more detailed morphological waveform analysis may
expand understanding of the ECG, making this already useful measure
even more informative in scientific and clinical settings.

Among the wide variety of quantitative approaches to this problem
the nonlinear dynamics, fractals and chaos received considerable
attention as potential tools to bridge the randomness and determinism
in the mechanisms of ECG generation [1].

Due to apparently irregular character of heartbeat rhythms,
heart rate variability (HRV) became a major empirical measure
for investigating the chaotic nature of the heart’s electrical activity.
Various methods of nonlinear dynamical analysis including the
evaluation of fractal scaling exponents, correlation dimensions, power
spectra, Lyapunov exponents and detrended fluctuation analysis have
been employed to investigate dynamic trends of erratic time series of
HRV. Reviews of major results indicate that the variations of inter-beat
intervals exhibit a number of characteristic features of deterministic
chaos [2,3].
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This study exploits the fact that ECG components are global scale
mass potential produced by collective behavior of closely located
cardiomyocytes. Since millions of cells participate in these processes,
it is widely accepted that the dynamics of ECG waveforms reflects
summary effects of processes taking place at the microscopic scale.
Thus, we may expect that significant aspects of chaotic dynamics and
fractal properties of the heart electrical activity are hidden in the time
course of the ECG components.

Our goal is to uncover and reconstruct major dynamic and
stochastic regularities of cellular processes hidden in the time course of
ECG waveforms. Using probabilistic formalism of quantum mechanics
we introduce a particle model of ECG generation which bridges
global scale ECG components with underlying elementary sources of
electricity. Identification of the model parameters on empirical grounds
provides means to reconstruct in computer simulations microscopic
events underlying ECG generation.

Particle model of ECG generation

ECG resembles electrical phenomena occurring in ensembles of
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multiple cardiomyocytes immersed in an interstitial fluid. Elementary
bioelectric sources acting at the microscopic scale are ions, both
positively and negatively charged particles, which cross the cell
membrane in both directions. The cell membranes have high resistance,
compared with the resistance of the extracellular space [4]. Thus, the
membranes serve as a separating material that divides the muscle
tissue into extracellular and intracellular compartments. Because little
current from extracellular sources flows through the cell membrane the
dipoles associated with the ECG constituents are produced by specific
ensembles of extracellular ions.

After release from the cell, extracellular ions have a possibility
to cross the membrane in the opposite direction, i.e., to return to the
interior of the cell. Balanced ion transport lacks significant power to
produce measurable changes in potential differences between various
spatial locations in the external media. An event that disturbs this
balance and has potential to produce a waveform deflection at the
global scale is a transient synchronization of ion flows across cellular
membranes of large ensembles of closely located cardiomyocytes. Such
complex events occur in a sequential order during the cardiac cycle and
may be associated with different ECG components.

Given the multiplicity of molecular mechanisms underlying
ECG generation, we need to avoid detailed description of the internal
processes acting on the microscopic scale. For a solution we refer to
the formalism of quantum mechanics addressed to a wide variety of
systems in nature that can be regarded as many-particle ensembles
with extremely intricate dynamics of their elements [5]. Such systems
are typically formed of huge ensembles of particles, with essentially
erratic motion, so a description of the individual elements is really
hopeless. However, this is not necessary in practical terms because
only cumulative effects are expressed in the global scale variables. At
this level, details of the individual particle motions are averaged — only
the mean characteristics are essential for a description of the global
scale dynamics. This is a cornerstone of the indeterminacy principle in
quantum mechanics [5].

A classic example is Brownian motion which portrays the
macroscopic picture emerging from randomly moving particles
[6]. On the microscopic level, at any time step, the particle receives
a random displacement, caused by other particles hitting it or by an
external force. Different models of particle collective behavior have
been developed for various physical applications in such fields as gases,
fluids, superfluids, electrons and ions in conductors, semiconductors,
plasma, nuclear matter in neutron stars, etc [7].

For the problem in question, we need to describe the temporal
evolution of the size of the external particle population related to
the transport processes between the extracellular and intracellular
particle compartments. We address this problem using the theoretical
framework of previous modelling studies of the short-term synaptic
plasticity in which the “birth-and-death” process (BDP) has been
settled as a tool for analysis of transmembrane particle transfers [8,9].
The membrane is considered as a boundary that separates the internal
and external particle compartments. We regard crossing the membrane
by an ion as an elementary event interpreted as the birth or death of a
particle producing a unit increase or decrease of the population size.

Since particle movements are governed by probabilistic rules, we
measure the size of relevant extracellular particle population at time
t by integer-valued random variable X(t) (boldface letters denote
random variables). From a variety of BDP models we choose the
nonhomogeneous BDP in which the birth and death rates A(t) and p(t)
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may be any specified functions of the time t [10].

Since inter-state transitions are governed by probabilistic laws, the
future of BDP is not uniquely determined. A major condition is that
during a sufficiently small element of time, A, the probability of the
change of the X(t) by more than one particle is negligibly small:

PrX(t+A)=X(1)+k]=0(A) if [k]>1, (n)
where Pr denotes probability and k is an integer.

Therefore, the particle system changes only through transitions
from states to their nearest neighbours. An increase of the population
size by a unit represents the birth, X(t + A) = X(t)+1, whereas
a decrease by a unit represents the death, X(r+A)=X(¢)-1. The
probabilities of these events for nonhomogeneous BDP are [11]:

Pr[X(1+A)= +1] (1)A+o(A) (birth) @)

l]u

where A(f) and p(f) are the birth and death rates, respectively.

Pr[X(t+A)= (1)A+o(A) (death) 3)

The expected population size related to these microscopic events
is defined by the integral equation [11]

e(1)=exp |- [[w(£) ()]s "

This is an average of X(t) variables measured in different trials,
i.e. the limiting behavior of a large number of random events. In this
probabilistic context we regard e(t) as a distribution function.

Characteristic functions of ECG components

The frequency domain counterpart of distribution function is
the characteristic function defined by the Fourier transform [12].
Retaining all the information possessed by distribution function,
characteristic function has been appreciated as an effective tool for
numerical manipulations with empirical data [13]. The method of
empirical characteristic function developed on this conceptual basis is
widely favored in the time series analysis of stationary processes [14].

A new feature we add to the method is that the signal in question,
i.e, the ECG, is a non-stationary process produced by a number
of sources. We use the method of fragmentary decomposition
as theoretical and computational tool which provides means
to decompose a non-stationary bioelectric signal into the set of
functionally meaningful components [15]. We regard such component
as an empirical distribution function produced by nonhomogeneous
BDPs and defined by equation (4).

Non-stationary ECG v(t) submitted to the fragmentary
decomposition is conditioned to form the time series
V= [vo,,,_, Vins '7VM]’ where Vm=V(tm), t =mA, m is an integer, M is
the number of samples and A is the sampling interval. Fragmentary
decomposition starts from the adaptive segmentation procedure.
The objective is to estimate segmentation points which define EEG
fragments associated with functional components in the form of
peaking waveforms. The segmentation points are defined as zero-
crossings and points of global and local minimums of the modulus of v(t).

More particularly, if
20 AND v

m=1 = m+1

(Vo <0 AND v, >0) OR (v <0)

m+l

then 1, =t_ is qualified as zero-crossing (segmentation point),
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where i is the number of segmentation point.

The point T, =t_ (i is the number of segmentation point) specifies
a global or local minimum of v if

[Vinet 2 Vi < [Vira

A sequence of segmentation points 7,...,Z;,..., Ty is so formed.
Figure 1 shows an example of adaptive segmentation with zero-
crossings illustrated in vertical red lines and minimums illustrated in

vertical blue lines.

Given ECG fragment of the length T, = 1, ,-T, between the
segmentation points T, and L (i=0,...,I-1), we define empirical
distribution function as w,(t)=v(t+t,) where t takes values from 0 to T,
The corresponding empirical characteristic function is defined by the
exponential finite Fourier integral

W, (i) =W, (@) exp[—iﬁi (a))} = Iwi(t) exp(—iwt)dt (5)

where W (w) is the amplitude spectrum (AS), §(w) is the phase
function (PF), w=2nf, fis frequency and i=V-1. Since the treatments of
the frequency characteristics are universal, the subscripts are omitted
in the following text.

Integrals of the type (5) deal with relatively short ECG segments
of different lengths. The most readily available technique of digital
spectral analysis using the fast Fourier transform is not suited for short-
time spectral analysis. As an adequate tool for numerical calculations of
finite Fourier integrals (5) we use the similar basis function algorithm
[16], an original version of Filon-type methods that provide maximum
precision in the numerical estimation of trigonometric integrals.

The complex spectrum (5) is fully defined by the real valued W(w)
and 6(w). According to the fragmentary decomposition method the
AS of a functionally meaningful component is adequately expressed by
Gaussian function.

We examined this proposition using standard 12 lead ECGs of
healthy subjects from the two sources. First, records for a group of 14
healthy subjects (7 males and 7 females; age 22-62 years, mean 38.6
years) from the outpatient cardiac clinic of the Macquarie University
(Sydney, Australia). Second, records of 7 males and 7 females (age 22-
58 years, mean 39.9 years) from the group of healthy subjects in the
PTB diagnostic ECG database [17,18].

As empirical characteristic we used to test the “Gaussianity” was the
normalized AS W' (@) =W (a))/W (0). The fits of analytical Gaussian

S

t(s)

Figure 1. Illustrates adaptive segmentation of ECG record. Vertical lines indicate
segmentation points.
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functions to numerous numerically calculated spectra indicate striking
resemblance of empirical W*(w) with the analytical function

¥ (@) =exp| ~(0w)' /2], (AS) ©)
where o is a parameter.

Typical result is illustrated in Figure 2. The vertical dotted lines
in Figure 2a show the ECG fragment chosen for identification.
Functionally, it corresponds to the T wave. The blue line in Figure 2b is
the normalized AS W*(w) computed from this fragment. The red line
shows the fit of the Gaussian template (6) with 0=25.6 (ms).

Similar results of the spectral analysis applied to the 5 fragments (P,
Q, R, Sand T waves) of the ECG in Figure 3a are illustrated in Figure 3b.

General form of W(w) is characteristic for a low pass filter
conventional parameter of which is the cut-off frequency F_. At this
frequency the attenuation of the AS drops by 3dB, i.e. W*(2nF.)=1/32.
The arrow in Figure 2b shows such defined frequency F =5.25 Hz.

Using F_, we define the AS normalized by both the amplitude and
frequency as
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Figure 2.a. The vertical dotted lines indicate ECG segment (T wave) submitted to the
spectral analysis. b. The blue line is AS of the T wave computed by the similar basis
function algorithm. The red line is Gaussian template with 6=25.6 (ms). The curves of
empirical AS and template are stuck together at F =5.25 Hz. This frequency is indicated by
the arrow. ¢. Comparison of the PF (blue line) with linear regression line computed over
the frequency range from 0 to F.. The arrow shows this frequency on the natural frequency
scale.
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Z(v)=W"(2zvF,.),
where v={/F is dimensionless normalized frequency.

Given (6) as the model of W(w), an expected form of Z(v) is the
Gaussian spectrum defined as

G(V)=€Xp(—V2) 7 (7)

Using G(v) as a template, Figure 3c exemplifies typical results of
sticking together Z(v) and G(v) at v=1 which corresponds to w=2nF ..
The frequency F_ estimated from this condition defines & =+/In2 / 27F, .

To test the adequacy of such fits we define F, as the boundary
frequency below which the mean square error between ¥(w) and
W*(w) does not exceed an empirically established threshold £=0.0002.
Using F, we evaluate dimensionless extension coefficient k =F,/F_ the
values of which for ECG components from Figure 3a are presented in
the Table 1. For the R waves of ECGs from 14 healthy subjects we found
the following k, ranges. (1) Outpatient cardiac clinic: from 1.91 to 3.16
(mean 2.49). (2) PTB database: from 1.82 to 3.63 (mean 2.46).

Similar results documented for different ECG components from
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Figure 3.a. The black line illustrates typical human ECG recorded from the lead II.
Conventional components represent succession of P, Q, R, S and T waves. Colored lines
are model components drawn according to equation (9) with the parameters k, ¢ and § from
Table 1. b. Shows the ASs of P, Q, R, S and T waves from Figure 1a. ¢. Colored lines are the
ASs from b after normalization of both the amplitude and frequency. The black line shows
the Gaussian function (7).

Fractal Geometry and Nonlinear Anal in Med and Biol, 2016

doi: 10.15761/FGNAMB.1000132

Table 1. Parameters of ECG components.

K z B F, k.

nv Ms ms Hz RU
P 4.13 21.1 52.4(0.0202) 6.31 2.29
Q -3.45 6.93 15.1 (0.039) 19.1 2.09
R 9.73 5.02 11.4 (0.00111) 26.3 2.09
S -4.01 5.5 10.8 (0.0185) 24 2.09
T 55 24 70.1 (0.183) 15.8 2.63

Parameters «, o, B, FC and kE were identified for each of P, Q, R, S and T ECG components
shown in Figure la. Values of kE are in relative units (RU).

various leads and subjects indicate random fluctuations of k, and an
erratic character of the spectral components above F. This allows us to
regard W*(w) as the sum of ¥(w) and a random component produced
by different artefacts. In this context equation (6) defines expected
form of AS.

With regard to the phase components, the tests revealed the
condition under which numerically computed phase function &(w)
shows consistency with a simple linear model

¢(w) = po, 8)
where B is parameter.

We found that if k, >1.5, the numerically computed PF 6(w) only
slightly deviates from linearity over the frequency range from 0 to F_.
Typical result is illustrated in Figure 2c where the arrow indicates F .

Thus the estimation of P is reduced to the calculation of linear
regression lines using 6(w) samples from the [0, w_] interval. The slope
of the regression line serves as the estimate of .

Nonlinear dynamics of ECG components

Approved analytical dependencies (6) and (8) define the complex
spectrum

Y(iw) = exp {—[(O'a))z/Z} - i,Ba)}

the time domain counterpart of which may be regarded as a generic
model of ECG component.

Since we deal with the casual process, either the real or imaginary
part of ¥(iw) is sufficient to find its the time domain counterpart y(t),
i.e. the time domain model of w(t) [19]. Using the imaginary part, we
define the model at t>0 by the sine Fourier transform

y(t) = %Iexp[—(ow)z/ﬂ sin(fo)sin (ot)do.

This integral has an analytical solution [20]

w(t)=we () —ws (1), ©)

where

NOE (ow/ﬂ)il exp[—(t—ﬂ)z/Zaz]l(t),
v (1) = (G\/ﬁ)il exp[—(z +,B)2/20-2]1(t),

1(t) is a unit step function.

At t>0 equation (9) is consistent with the wave function in a general
form of the d’Alembert’s solution [21]. In this context, the process
described by equation (9) may be regarded as an impulse response
of a dynamic system governed by the following system of nonlinear
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differential equations:

‘VR |: /O- ]\VR t
‘l’s() [ (B+1)/c” ]\VS t (10)
V(1) =g (1)~ ws(2)

where Ve (t) and Vg (t) denote the derivatives of Wr (t) and yg (f),
respectively.

The form of these equations allows us to qualify the system as a
non-autonomous system, that is, a system driven by time-varying
signals.

Function y(t) as well as equations (10) are fully determined by
the results of the frequency domain identification of AS and PF which
provide the values of the parameters ¢ and . Taking an additional
parameter k=W(0), we regard ky(t) as a voltage between the poles
of an extracellular dipole. The red line in Figure 2a illustrates the T
component computed on this basis. Using parameter values from the
Table 1, the colored lines in Figure 3a illustrate analytical solutions (9)
obtained for P, Q, R, S and T components.

With regard to the component composition of equation (9), we
consider y_(t) and y(t) as the source and sink elements of the dipole
associated with the underlying particle populations “R” (Resource) and

S” (Sink), respectively.

Microscopic origins of ECG components

The next question to consider is how elementary sources acting at
the microscopic level produce global scale transients (9). To specify
the birth and death rates in terms of o0 and  parameters, we refer to
equations (1)-(3). We regard the reference point t=0 as the time instant
from which the BDP transfers from the resting conditions governed
by the constant birth and death rates A, i, A, and y, to the transient
conditions governed by the time dependent birth and death rates A (t),
(D), A(t) and p(t).

To describe transient behavior of the population R we replace
ME) and p(§) by specified functions A (§) and p,(§), respectively.
Accordingly, e(t)=y,(t). Using unique solution of equation (4) for these
conditions, we deduce the following rules that govern the transient
behavior of the sub-population R:

M (£)=p/c>, w (t)=t/c> (t20) an

To apply similar deductions to the population S, we replace A(£),
H(E) and e(t) by A (§), u (§) and y(t), respectively. The corresponding
solution of equation (4) provides the following rules that govern the
transient behavior of sub-population S:

A (1)=0, pg(t)=(t+p)/c’

Constant birth and death rates for resting conditions are derived by
exclusion the time t from (11) and (12). Thus, the rules for the resting
conditions are as follows.

t>0 (12)

Sub-population R:

:ﬂ/o‘z, pe =0 (t<0) (13)
Sub-population S:

=0, pg=p/c (14)

Disclosure of these probabilistic rules provides means to move
from the global scale descriptions of the particle populations in
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terms of characteristic functions to numerical simulations of particle
populations at the microscopic scale.

The number of particles X(t) in particular trial is computed step
by step for consecutive points 7, =i-A (l' =-M,..,0,.., N), where A is
a small element of time. The corresponding time series is presented by
the discrete samples x; = X(#,) . The time point t, is taken as an instant
at which the resting conditions are switched to the transient conditions.

The choice of A is made in compliance with condition (1) which
states that during a sufficiently small element of time A, the probability
of a change in the population size by more than one element is negligibly
small. Consequently, permitted size of the particle population at the

timet,  is:x  =x+1 (birth),x ,=x (unchangedsize) orx,  x-1 (death).

The probabilities of such inter-state transfers are expressed by
equations (2) and (3) which we rewrite in the following form:

Pr[xm =X, +1] =p, (i)+0(A),

Pr[xm =X, —1] =p, (i)+0(A),
where p, (i) and p (i) are the probabilities of a particle birth and death,
respectively, in the time interval from t to t, .

Under the resting conditions which persist until t<t, the R and
S particle sub-populations behave as simple BDPs with the birth and
death rates defined by equations (13)- (14) .

Thus we obtain the following probabilities of the birth and death of

a particle in [tl, tm] interval (i=-M,..,-1):
Sub-population R: p, (l) = xiBA/G2 , P4 (l) =0 (15)
Sub-population S: p,, (l) =0, p, (1) = xi[)’A/az. (16)

Under the transient conditions induced at the time instant t, the
particle populations develop as non-homogenous BPDs with the birth
and death rates defined by equations (11)-(12). The corresponding

probabilities of the birth and death in [tl o 1 +1] interval
(i=0,...,N-1) are:
Sub-population R: pb xﬂA/a pd xiAzi/Gz. (17)

Sub-population S: pb( ):0, pd( )=xiA lA+ﬂ)/O‘2. (18)

We organized the calculations as the succession of standard steps
dealing with the time intervals|z,z,,](i=-M,..,0,..,N —1). Given
the step beginning from t, the x; serves as the initial condition. The
value x, , which X(t) takes at the end of the interval is computed using
Monte Carlo simulations.

The procedure for each step is as follows:

(1) Estimate probabilities p, (i) and p,(i) using equations (15)-
(16) for the steady-state conditions and equations (17)-(18) for the
transient conditions.

Pick out random real numbers R, and R,using a random number
generator to produce real numbers in the range from 0 to 1.

Estimate the size of the particle population at the end of the interval:
X, =x+b-d,
where b and d are binary numbers defined as follows:
b=1 if R, <p, (,) and is zero otherwise,

d=1 if R,<p,(i) andiszero otherwise.
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Numerical experiments have been supported by a specially
designed computer program written by the first author in the object
Pascal language of Embarcadero Delphi 2010.

Transient deterministic chaos

Using the algorithmic framework for Monte Carlo simulations, our
goal was the reconstruction of the microscale origins of the global scale
equation (9). Thus, we deal with temporal developments of particle
numbers X, (t) and X (t) in different trials. The number of particles
producing a dipole is defined as X (t)= X (t)- X, (t).

To perform simulations, it was important to choose the value of
A under which the probabilities p, (i) and p,(i) are low enough to be
consistent with the condition (1). Based on a number of numerical
experiments with different parameters, the value A=0.0001 ms was
selected for numerical simulations illustrated in figures 4 and 5. The
segmentation points were t=i-A with i taking values from -2-10° to 3-10°.
The corresponding time interval extended from -20 to 30 ms with t=0
corresponding to the switch from the resting to transient conditions.
The values of the parameters ¢ and  were taken from the Table 1 for
the component R. Thus, 6=5.02 ms and p=11.4 ms.

As an initial condition, an equal size N =20 was prescribed to both
sub-populations. The particle population sizes in Figure 4a and Figure 5
are expressed in relative units, i.e.

16 1 Particle population size
=
= =—S5ource =—S5ink
- 12
fe)
a =
< 3 4
a
W
w /_ 10 20 tlms) 30

0.08

Probability
b
0.06 - Source
For
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0.04 g L e = death
/g N
0.02 # vy
l" ‘-b‘
s N
-20 -10 ] 10 20 t(ms) 30
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c 0.012 -
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|l
oos \‘ birth
\ === death
ooos { %
"
1]
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" . & - !
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Figure 4. a. Illustrates temporal evolution of the source and sink particle populations in
typical trials. Resting conditions computed from -20 ms are switched at t=0 to the transient
conditions. b, c. Illustrate the birth and death probabilities drawn according to equations

(15) - (18).
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Figure 5. Solid lines illustrate typical changes of population sizes in single trials. The
dotted lines are the averages of 5 arbitrary selected single trial records.

X (1) =X, (0/Ny, X5 (1) = X(1)/N, and X, (¢) = X, () /N, -

Typical single trial trajectories of the sub-population sizes are
illustrated in Figure 4a for the source and sink. The underlying
probabilities of the birth and death events are shown in Figures 4b and 4c.

At t<0 the development of particle populations is governed by
constant birth and death rates defined by formulas (13)-(14). Thus,
we deal with simple BDP. Accordingly, for each sub-population the
probabilities of the birth and death are identical in the time interval
from -20 ms to 0. The differences between different trials have purely
statistical origins. This type of behaviour is free from deterministic
trends, i.e. we deal with stationary stochastic processes.

The transition from the resting to transient condition was simulated
as the change of the constant rates of the birth and death to the time
dependent rates (11)-(12). The change occurs in a “smooth” fashion.
This means that the sizes of the particle sub-populations developed
under the resting conditions serve as initial conditions for the transient
regimes.

At t>0 the probability of the birth in the sink sub-population is
zero. Thus, as seen from Figure 4a, the transient conditions lead to a
relatively fast flow of particles from external compartment to internal
compartment.

In contrast, the size of the source sub-population is governed
by the complex interplay of the birth and death probabilities. Onset
of the transient conditions gives rise to both probabilities. Initially,
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the birth probability prevails over the death probability. During this
process the size of the source sub-population increases and reaches the
maximum at approximately t=12.8 ms. The succeeding developments
show dominance of the death probabilities. As the result, the size of the
source sub-population declines and returns to the resting conditions.
Thus, under the transient conditions an erratic particle behavior is
strongly influenced by deterministic trends. We deal with deterministic
chaos.

The population sizes of the source and sink from Figure 4a are
redrawn and separately shown in Figure 5a (blue line) and Figure 5b
(red line). The black line in Figure 5c¢ is the sum of these populations.
The mixture of stochastic and deterministic components of these
processes at t>0 is a characteristic feature of deterministic chaos.

In order to compare consistency of computed single trial trajectories
with the global scale deterministic solutions (9) we need to estimate
the limiting behavior of the particle populations. A useful approach
to disclose the expected trajectories is averaging. The dotted lines in
Figure 5 show the averages of 5 single trial processes. Obviously, these
procedures reduce variability and bring simulation results to a better
proximity with expected trends.

To support precise comparisons we need to set up equal numbers
of particles in both the source and sink populations at the time t=0
from which the transients evolve. To realize this condition we start
simulations from t=0.

The blue lines in figures 6 a, b and ¢ exemplify X[, (¢)in single
trials computed for particle population with 10, 50 and 100 particles.
The red lines in Figure 5 show the averages of 5 single trial realizations
from each particle population. Comparison of these statistical averages
with the black lines (function y(t) with corresponding parameters)
shows that increase of the particle numbers makes single trial samples
indistinguishable from the theoretical solution. This is convincing
evidence of the deterministic chaos hidden in the time course of the
global scale ECG. Due to a temporary appearance of this effect, we
name the uncovered mixture of deterministic and stochastic processes
the “transient deterministic chaos”.

Statistical self-similarity of ECG components

The Mandelbrot concept of a fractal is most often associated with
objects satisfying criterion of self-similarity which means that an object
is composed of similar sub-units that resemble the structure of the
whole object [22]. The theory and numerical simulations presented in
this paper provide evidence of common statistical and deterministic
rules that govern generation of ECG functional components from
different ensembles of multiple cardiomyocytes. For example, Figure 6
illustrates similar global scale effects produced by particle populations
containing different numbers of particles. This means that cellular
ensembles may be divided into the constituent parts governed by the
same probabilistic and deterministic rules as the whole ensemble. We
summarize this outcome as the following statement of the statistical
self-similarity of ECG constituents.

Statistical self-similarity statement: Consider function wy(t)
with o and  parameters as the model of ECG component generated
by synchronous activation of a large ensemble L of closely located
cardiomyocytes. Let us extract a part of L regarded as an ensemble S.
We state that the global scale effect produced by the S is fully expressed
by the changes in the values of 0 and P parameters while the form of
analytical function y(t) remains invariant.
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Figure 6. Compares theoretical solutions with the results of computer simulations of the
particle models. The black lines show theoretical solutions drawn according to equation (9)
with parameters ¢ and B from Table 1 for the R component. Blue lines exemplify X; (z)
computed for different particle populations. The red lines are the averages of 5 single trials.

This statement differs drastically from conventional deterministic
treatments which regard membrane potentials as “building blocks” the
linear summation of which produces a global scale ECG [23]. Suppose
that the membrane potential is described by a certain function with
M parameters. Linear summation of the effects produced by J cells
must take into account the parameters of J functions and contain
JM free parameters. Given that millions of cells participate in the
ECG generation, this is a highly under-determined task. Actually, the
large number of details and free parameters delivered to the linear
summation can often obscure rather than illuminate the essentials of
the underlying events.

In contrast, a compact set of o, f and k parameters accumulates
all essential aspects of the underlying events at the microscopic scale
without changes to the general form of analytical y(t). This constitutes
the basis for consideration the samples of the transient deterministic
chaos as fractal objects.
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Discussion

The results of the identification the ECG components from various
leads in different subjects can be summarized by stating that the time
domain counterpart (9) of empirical frequency domain AS (6) and
PF (8) can be regarded as a universal formula for a monolithic ECG
waveform. The corresponding source is described by the system of
non-linear equations (10).

Probabilistic interpretations of equation (9) in terms of the
distribution function provided means to identify the two interrelated
particle population as the sources of an extracellular dipole producing
the ECG component waveform. Using non-homogenous BDP as a
theoretical framework, the rules (11)-(14) governing the birth and
death rates were deduced.

This probabilistic basis of our approach provided means to reduce
an intractably huge number of the measures of heart electrical activity
to a universal model of ECG component with the fewest parameters (o,
B and «). Being limit distributions for the sums of random variables,
these parameters discriminate those aspects of the molecular machinery
that are significant on the global scale from those that are not.

The removal of irrelevant variables is a crucial outcome of our
radical departure from the superposition principle which interprets the
ECG as a linear superposition of membrane potentials. Conceptually,
we relocate the elementary sources of electricity from the cellular to the
molecular level. At this microscopic scale of bioelectric activities we
deal with particle movements governed by the defined rules of the birth
and death processes. The vanishingly small role of individual particles
in the generation of global scale processes reduces the problem to the
study of the limiting behavior of large numbers of independent random
variables [24].

The most important probability distribution in this context is
the normal (Gaussian) distribution because, in accordance with
the central limit theorem, any process of random sampling tends to
produce a normal distribution of sample values, even if the whole
population from which the samples are drawn does not have a normal
distribution. Single normal distribution is not suitable to account of
the temporal changes in the system from which the samples come.
We regard empirically grounded appearance of two symmetric
Gaussian functions in our model (9) as a solution which overcomes
this limitation. It is difficult to escape the conclusion that y(t) may be
regarded as a time dependent statistical distribution applicable to wide
classes of physiological processes.

Computer simulations provided means to investigate the role of
deterministic and stochastic factors involved into the ECG generation.
Animportant finding is the difference between the resting and transient
conditions. Under the resting conditions the particle movements
across membranes are balanced and lack power to produce measurable
changes of ECG waveforms. Mass potentials produced by these particle
movements belong to the category of stationary stochastic processes.

The component generation is triggered by some external signal. On
the global scale this eventisreflected by transient potentials the dynamics
of which is perfectly described by equation (9). Phenomenologically,
the global scale potential is generated by collective behavior of a
large ensemble of cardiomyocytes. Using computer simulations we
reconstructed transient potentials produced by small fragments of
the large ensemble. The point that we do consider to be established
is that potentials developing during transient conditions contain
deterministic component and thus represent the mixture of stochastic
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and deterministic processes characteristic for the deterministic chaos.
However the deterministic components are vanishingly small during
the resting conditions. To take into account the changing statistical
character of mass potentials we have introduced the notion of the
transient deterministic chaos.

Remarkable fractal property of the transient deterministic chaos
follows from the invariance of the limiting statistical distribution
(9) applied to different particle ensembles. Thus, a wide range of
monolithic deflections identified in the time course of human ECG may
be qualified as fractal entities related by the statistical self-similarity.

The principles presented here can be readily extended to many
other types of biomedical signals, specifically electroencephalograms,
and work in this direction is in progress.
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