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Abstract

'This paper deals with some new integral relation of I- function of one variable.

Introduction

The I- function of one variable is defined by Saxena [1] and we shall
represent here in the following manner:
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where @ = \/(—1),z(# 0) isacomplex variable and
z' =exp[s{log|z|+w arg z}]. (1.2)

In which log |z| represent the natural logarithm of |z| and arg |z| is
not necessarily the principle value. An empty product is interpreted as
unity, also,
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m, n and pi Vi € (l,....r) are non-negative integers satisfying 0 <
n<p,0<m<gq, Vie (L), (j=L...psi=L..... r) and
By G =1...q;1=1...r) are assumed to be positive quantities for
standardization purpose . Alsoa, (j=1....p;i=1...... ;r)and b, (j
=1 » Qs 1= 1,.....,r) are complex numbers such that none of the
points.

S={n+v)| B, |}.h=1,...... ,m;v=0,1,2,..... (1.4)
which are the poles of I" (b_ - B,.S),h=1,...... m and the points.
S={(a,—n-D]a|l=1,...n;1=0,1,2,...., (1.5)
which are the poles of ['(1-gq, + ,s) coincide with one another, i.e. with
a,(b,+v) = b(a,-n-1 (1.6)
forn,h=0,1,2,...;h=1,...,m; | =1,....,n.

Further, the contour L runs from - @ to + @ . Such that the
poles of T(b,-B,5)> h=1...... , m; lie to the right of L and the poles
I(l1-a,+a5),1 = 1,.....n lie to the left of L. The integral (1.1) converges,
iflargz| <% B (B>0), A <0, where
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A:iaﬂ—iﬂﬂ. (1.7)
j=1 j=1

and
n Di m qi

B=Zaj— Zaﬁ+2ﬂj—z ﬂji’ (1.8)
Jj=1 J=n+l1 Jj=1 J=m+l

Vi e (1.,

Gradshteyin and Ryzhik [2] given table of Integrals, series, Sharma
[3] evaluated the integrals involving general class of polynomial
with H-function, Srivastava and Garg [4] established some integrals
involving a general class of polynomials and the multivariable H-
function. Recently, Satyanarayana and Pragathi Kumar [5] has evaluated
Some finite integrals involving multivariable polynomials, Agarwal [6]
established integral involving the product of Srivastava’s polynomials
and generalized Mellin-Barnes type of contour integral, Bhattar [7]
established some integral formulas involving two H - function and
multivariable’s general class of polynomiyals. Satyanarayana and
Pragathi Kumar [5] has evaluated some finite integrals involving
multivariable polynomials. Following them, I evaluated some new
integrals involving multivariable polynomials, and I-function of one
variable.

Formula Required
The following formulas will be required in our investigation

(i) The second class of multivariable polynomials given by
Srivastava [8,9] is defined as follows:

oyul /U 3

z Z (_VI)U,kl"'(_Vz)U,k, AV, k...

K=0  K,=0

k,
. L
SVok] 5k 2.1)

S!E,,IVI,I‘ [0 x,]=

(ii) The first class of multivariable polynomials introduced by
Srivastava and Garg [4] is defined as follows:
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Some New Finite Integrals Formulae
In this section we prove two integral formulae, which involving

multivariable polynomials, and I function of one variable.
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where m>0 (i=1,
simultaneously).

L1,n>0(=1,...,t) h>0,2>0 (notbothare zero
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Provided the conditions stated in results (3.1) are satisfied.

Proof : To establish integral in (3.1), we express I-function occurring
in its left ~-hand side interms of Mellin-Barnes [10] contour integral
given by (3.1), the second class of polynomial given by (2.1). Then
interchange the order of integration of summations and integration,
we arrive the following:
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(z2"%) ds -

Now we evaluate the above integral with help of integral (2.2).
Interpreting the resulting contour integral of H-function we can easily
arrive at desired result (3.1).

To establish integral in (3.2) can be easily established on the same
lines similar to the proof of (3.1).

Special Cases of (3.1) and (3.2)
Take A (V,kj.5V,k) = A(Vok).. A (V,k) in (3.1) the
multivariable polynomial §,"}" (x,.....x,) reduced to the product of well-

known general class of polynomials S” (x) and the result (3.1) reduced
to following form
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(b)Substituting aj=Bj=1 in (4.2) we obtain
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(a)Substituting r=1 in (3.2), we obtain :

J(l —x)"(1+x)"S) Y [y, (1= x)" 1+ x)",.es v, (1= x)" (1 + x)"]

m,n h (a/’a/)l,p
X H [z(l—x)g(l+x) (b/ﬁ/)l_q} dr
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