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Abstract 
In a previous part, I introduce the structured deformations theory (S.D.) by Del Piero & Owen restricting the attention on rescaled mono-dimensional sub-set. I find 
a particular solution in agree to the classical fracture models besides a response function in according either stress and strain fields distribution in biological materials. 
In this part we remark some concepts on S.D. theory, up-grading previous part and emphasizing the theory kernel, to follow on the classic bio-membrane elastic 
behavior until their damage and fracture under mechanical point of view. The question in first time is developed by the classical approach to denote the difficulty on 
macro and micro scale relationship besides their reciprocal influence over the deformation field. In fine I perform the S.D. implementation over a membrane model 
undergo to bending action, modelling in this way the ice needles actions, produced by freezing in cells preservation.
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Introduction 
The consistent target in this paper is the introduction a size length 

and its relationship to sub-macroscopic geometrical change by the 
multiscale geometry of structured deformation. Particularly theory of 
elasticity with disarrangements linked with the first order S.D. allow 
the additive decomposition of the macroscopic deformation gradient 
in two distinct part, where one part is without disarrangement while 
the second part with disarrangement. What is relevant in this approach 
regard the upgrade of the nonlinear elasticity theory since the S.D. 
method is integrating voids formation and slip inside the theory. 
Performing the previous additive decomposition, this is without 
restriction on the size deformation, combining disarrangements as sub-
macroscopic jump as approximating piecewise smooth deformation 
but, without gradient sub-macroscopic jump. To avoid all this setting a 
second-order structured deformation framework where, is posed, one 
other additive decomposition of the deformation gradient in a part 
without disarrangements and a part due to gradient disarrangements.

All this rest valid when large deformation appears in any material. 
The implementation of SD theory, as illustrated in the first part of this 
work, is centered on red blood cellular membrane during freezing and 
thawing occur in red blood cryopreservation. The physical questions 
which characterize this process, regard the ice needles formation and 
theirs mechanical contact with membrane surface. The roughness of 
the ice surface not allows a smooth contact with soft biological material 
but on the contrary, it appears a quasi-uniform distributed puncturing 
ice needle action. Generally the effects are dramatically ill-omened as 
well as generating the failures to a lot of red blood. The aim of this 
paper is to make an attempt besides genuine model, to simulate the 
mechanical effects on a biological and complex material which is the 
cellular membrane. The implementations of structured deformation 
theory, in my opinion, open a new way to consider strain at macroscale 
linked with strain at microscale. Particularly, in this specific question 
the S.D. tool allow us to differentiate the phospholipid deformation 
mechanism as first damaged element in the membrane global failure. 

Remark on Structured Deformation Theory

Beginning from this section I recall the S.D. fundamentals by Del 
Piero & Owen which exhaustive reference are [1-5]. I select the crucial 
geometric elements needed to describe elasticity with disarrangements 
and for this I replay some important definition as:

Let Ω a regular subset of the Euclidean space 𝒮 and let 𝒰 the 
translation space of 𝒮. A structured deformation defined over 𝒮 is a 
pair (, 𝐺) which map:

𝑔: Ω↦  and: Ω↦𝒰                     			               (1)

Such that 𝑔 is smooth, injective with smooth inverse; 𝐺 is 
continuous and the pair (𝑔,) respect the inequality:

0< c < det 𝐺(x) ⩽ det ∇𝑔(x) ∀x∈Ω      		                (2)

Here in according to Del Piero & Owen [3] I will to remark the 
disarrangement concept as the term to describe non-smooth sub-
macroscopic geometrical change likely slips or voids existing inside 
the elastic body. The term 𝐺 may be defined as deformation without 
disarrangements and as proved in theorem [5] the remarkable relations 
follow:

lim nn
f g

→∞
=

lim nn
f G

→∞
∇ = 					                    (3)

M g G= ∇ −
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Figure 1. Freeze-fracture image (from cytochemistry.net)

The deformations fn are called simple deformations and the pair (𝑔, 
𝐺) is the structured deformations determined by the sequence nn fα . The 
tensor is the total deformation in x and 𝐺(x), 𝑀(x) are its elastic and 
inelastic part. From equation [3], the last formula representing a tensor 
value map defined as a deformation field due to disarrangements. So, 
becomes possible to define the additive decomposition:

g G M∇ = +

In other words the tensor field 𝐺 describe the limit deformation 
of the fracture-free parts of the body, while g∇ is the deformation 
observed at macroscale. Consequently, any macroscopic deformation 
can be explicit as sum of two parts: the first one without disarrangements 
and the second one with disarrangements. Concretely the S.D. theory 
takes care of materials governed by constitutive laws developing 
state variables. The newness in this theory may be individualized as 
state variables having geometrical characterization and, particularly, 
materials response is assumed to be elastic. All of this takes the theory 
as more adaptable to describe damaged materials and so different 
inelastic phenomena (plasticity, fracture, damage) can be viewed as 
singularities in the elastic state.

Bio membrane elastic properties 

The bio-membrane constitutive behavior characterized of the 
elastic property of lipid bilayer find theirs elastic fundamentals from 
the Helfrich theory [6]. Based on the continuum mechanics theory it 
has proposed as first time, identifying three type of strain associated 
with the relatives stress and emphasizing the curvature role as 
equilibrium and stability parameter. Membrane curvature, have been 
investigated over a long time, by a lot of researcher in different fields 
as, biologists, medical, physician engineers, since the complex system 
has been stimulating to the different approach as interest. In fact in 
physic we usually want to reduce all the behavior to the fit formula 
while, in biology all details represent the foundation for life. The major 
interest to the membrane mechanical behavior is here represented by 
their curvature and remodeling [7]. According with the previous they 
are five ways to bend a cell membrane such that a positive or negative 
curvature is born. Particularly, more evident are changes in the lipid 
composition such to influence integral membrane proteins, cytoskeletal 
proteins and microtubule motor activity, scaffolding by peripheral 
membrane proteins and finally active helix insertion into membranes. 
Without loss generality here I focus my attention researching on 
already know mechanical model to up-grade and adequate theirs to 
structured deformation theory implementation. I find, other Helfrich 
various proposed model in classic literature as Tu et al. [8], Steigmann 
[9], Jenkis [10], Maleki et al. [11]. Unfortunately the approach used 
reproduce only macroscopic effects neglecting the fundamental size 
effects produced by the cell complex heterogeneity. 

Similar results can be verified about failure model, Evans et al. 
[12] Fournier et al. [13] where in this last, the first order rupture line 
is found with increasing tension and a continuous increase in proto 
pore concentration with rising temperature till instability, emphasizing 
a possible failures mode of the lipid bilayer. Here remain as important 
fact to underline about failure some aspect derived by Helfrich model 
[6], where three types of strain, i.e. stretching, tilt and curvature are 
identified as well as likewise the associated stress. I will to point out 
the tilt bilayer model since the next first proposed model reproduces 
the relative deformation field. From now I will to deepen some 
aspects which content represent the framework under which create a 
coherent model implementing the S.D. theory. It’s my opinion that a 
logic way to the question is to individualize the macro-set such that 

the physical represent is more near to the real life. The first set may be 
represented by biological framework and so in according to Virga et 
al. [14] biological membranes are complex system since they consist of 
lipids, proteins and ions, water, carbohydrates the last three in minor 
amount. Between lipids there is a basic different among polar lipids like 
phospholipids and glycolipids, and non-polar lipids like sterols. Here 
help us underline that phospholipids are common in all membrane 
and again, their particular structure become binding to the intrinsic 
properties of the membrane. Lipid aggregates in the famed bilayer phase 
can further reduce to danger contact among aliphatic chains, water and 
ice by bending themselves to form vesicles. In particular in the Virga 
et al. paper [14] the membrane kinks have been exalted together tilt 
and curl-up phenomenon in phospholipids elements. All this will be a 
crucial element to consider in the next model formulation. About the 
mechanical and constitutive properties the biological membrane are 
elastics and this allow an efficient approach by variational methods. In 
according to Tan et al. [15] I impose some restrictions to the membrane 
behavior as: 

i- The biological cells are assumed spherical and the internal 
intracellular liquid is assumed as hydrostatic pressure.

ii- the cellular membrane is composed of incompressible 
homogeneous isotropic material with constant thickness before the 
deformation.

iii- the cytoplasm is incompressible then the cell volume remain 
constant.

The previous sentences have been used in various continuum 
models representing again a valid base to suggest new model.

About the external action or interaction over the membrane this 
may be characterized through static and dynamic interactions. The 
dynamic is resulting from the destruction of the membrane fluctuations 
caused by embedded macromolecules, through rigid inclusion or 
specific receptors. The static interactions derived by perturbation of 
the bilayer structure or equilibrium membrane shape by the embedded 
or adsorbed macromolecules [16]. Finally in the next figures I bring 
the image of cell membrane freezing (Figure 1) and contemporarily 
reproduce the acceptable modeling of the red blood cell membrane 
together the possible deformation mode to the lipids elements (Figures 
2 and 3) in according to the figure 1.

Classical approach

In according to Owen [5] classical measures of local deformation 
(for example, deformation gradient or plastic deformation) result as 
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Structured deformation implementation

From now I will to propose some different S.D. model applied to 
possible over know deformation mode on cellular membrane. I start 
with a first simple model reproducing, in an opportune subset the 
micro-deformation mode interesting membrane lipid bilayer when 
subjected by punch action (ice needle).

I consider a portion of the bilayer from strain zero state at shear 
deformation state after the contact ice membrane surface. The follow 
figures represent a reasonable deformation mode (classic shear mode) 
where the one single lipid slips respect to the next.

Considering a reference configuration N = 2 and let ℬ the 
continuum part under consideration having a rectangular form (0, L) x 
(0, h). Let the displacement field:

( ) ( )nu y k n δ= for ( ) ( )1k n h y k n h− < <  (1)

with the b. c. ( ( )0,n n nu u yν = = and in this case: k = 8

The simple deformation field ( ),n nfℵ follow:

nℵ = ( ) ( )0, : 1.. 1L k n h k n× = −    			                 (2)

( ) ( )( ), ,n nf x y x u y y= +  			                   (3)

from this displacement its easy derive the gradient which value 
appear as 

( ),nf x y I∇ =  					                       (4)

Setting n ∞ we have ( ) ( ), , ,nn f g Iφℵ 

( ) ( ), ,g x y x y h yδ= +    				                     (5)

and 

( )1
0 1

hg δ∇ =  					                   (6)

Consequently the previous formula confirms that the macro-
deformation is a simple shear. Vice versa remembering the definition 
of tensor G we find G = Ι; namely, the disarrangements exist and the 
set of S.D. (∅, g , I ) may be descriptor of slips mode among single 
phospholipids constituents the bilayer. This micro-deformation 
framework appears without general plane deformation. To start a 
second implementation, I will before remark that usually the equality 
det detG g= ∇  appears as satisfied but when it’s not and the inequality 
det detG g< ∇ follow, then it may be interpreted as incorporation of 
voids in the microstructure di a continuum elastic body. Another 
possible failure mechanics over the cellular membrane is represented 
by distinct micro-cracks namely rising of voids within the membrane 
surface. This phenomenon can be derived through different contact 
from fractal surface of the ice such that more needles are characterizing 
the contact surface.

For example consider a bi-dimensional set Ω where the body ℬ 
have the geometry by the set (0, L) x (0, L) and let 

( ) ( )1

1
0, 0,n

n h

h hk x L L x
n n

−

−

      =             
  		                 (7)

and 

( ), ,n
h kf x y x y
n n

δ = + + 
 

			                   (8)

For h , k = 1…n and δ real positive then 

1h hx
n n
−

< < 					                        (9)

dimensionless. Nevertheless, in the continuum body, some geometrical 
change on the macroscopic and sub-macroscopic size can occur in 
some zones showing change in their boundary. In order to predict this 
phenomenon, elasticity and plasticity theories have been develop many 
tools as strain gradient, as well as, elastics or plastics deformations 
gradient types. Classically speaking to resolve our target, we need 
a procedure that allows the modelling microstructural size effects 
and this within the non-linear elasticity framework. Habitually one 
frequent tool is the gradient-enhanced computational homogenization 
procedure where is posed the macroscopic deformation gradient 
tensor and its gradient on a microstructural RVE. This approach, 
when stopped at first order, it may be based on the derivation of the 
local macroscopic constitutive behavior [17]. In this approach the 
deformation gradient has been derived by calculation on every point of 
the macrostructure and then using it to make the boundary conditions 
on the formulate RVE defined over a macroscopic point. Successively 
the macroscopic stress tensor derive by average the RVE stress field 
over the RVE volume. The final results under stress-strain law form, 
may be obtained

On this approach, generally, the resulting micro-deformation 
modes appear as macroscopically uniform, neglecting any bending 
local effects. All this since the scale length is negligible in comparison 
with microstructural length. The evident as well as salient result is that 
only simple first order deformation modes may be treated, omitting the 
bending mode in comparison to tension, compression and shear mode. 
This relevant and negative result affirm that the microstructure size can 
be considered as irrelevant and so localization phenomena cannot be 
taken in sufficient account. These results address us to expand high 
order theories, especially in homogenization approach, but their 
computational difficulty recommend all to see other as simplified way. 
In this contest, is my notice, that the structured deformation theory may 
be one convenient, as well as, innovative tool to resolve the questions.

Figure 2. The defined bilayer micro-set

Figure 3. Kinematics of lipids failure
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Discussion
The proposed approach, explained through two classical damage 

and failure modes, has the asset to consider typical non-linear effects, 
as damage or failure, remaining in the linear elasticity computation and 
ever more hold great valuation the size effects. All this allow the better 
understanding to report the link micro-macro in complex as well as 
heterogeneous systems and materials. These first results consent a deep 
progression and invite us to develop model with addition of greater 
analytic support since, the linearity of the relationship, from which 
the 1^ order structured deformation theory, consent us to enrich both 
sequence and/or function, describing the different deformation modes 
in different size as in different constitutive relationship. Certainly the 
proposed models cannot be considered as exhaustive in fact, the next 
steps oblige us already to consider the case when the limitations of 
the S.D. theory result. Particularly when the term ∇2g  which role is 
to emphasize deformation affects a very small length scale, disappear. 
These penalties may be overcomes applying second-order structured 
deformation develop by Owen [5] as planned in a next paper.
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h/n 

Figure 5. Shear deformation mode in phospholipid bilayer

Figure 6. Voids generation after deformation
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