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Abstract
The introduction of minute particles into the body to treat disease or repair damage may sound like something out of science fiction, but recent advances in 
nanomedicine leave researchers increasingly hopeful about the viability of medicinal opportunities on the nanoscale. Quantitative methods based on data mining and 
machine learning techniques have to strengthen this new branch of medicine. In this paper we analyze applications of supervised and unsupervised learning technique 
to better understand hot issues in nanomedicine regarding nanoparticles, molecules and cells behaviours and relationships.
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Introduction
The goal of this paper is to explore the techniques of data mining 

and machine learning, used in nanomedicine researches, considering 
example articles in literature (see bibliography). Literature delivers a 
variety of definitions of nanotechnology which all have their advantages 
and limitations. While the prefix nano is often used just for a description 
of the length scale between 0.1 to 100 nanometer (1 nm=109 m), 
this size regime does not imply per se a new quality of materials or 
devices. A more specific definition has been given in 2000 by the US 
National Nanotechnology Initiative: “Nanotechnology is concerned 
with materials and systems whose structures and components exhibit 
novel and significantly improved physical, chemical and biological 
properties, phenomena and processes due to their nanoscale size”. With 
the reduction of magnitude, apparently different, and qualitatively 
new and advantageous properties emerge from the respective material 
at the nanometer scale. Nanomedicine means essentially applying 
nanotechnology to medicine. Nanomedicine has not to be confused 
with nanobiotechnology: the former focus on the applications of 
nanotechnology concepts to medical applications, while the latter 
encloses all basic research at a nanoscopic level on biological systems, 
e.g. investigations on plants [1].

New nanomaterials are rapidly being developed for a wide range of 
biomedical applications. However, despite the breadth of applications 
centered on human health, relatively little is known about fundamental 
nanomaterial-biological interactions, therefore, even less is known 
about how to design nanoparticles to exhibit a desired effect in living 
organisms. A rational approach has to be employed to direct the safe 
development of novel nanotechnologies and to pro-vide accurate 
predictions of nanomaterial-biological interactions. Such an approach 
will inevitably require data mining and computer simulation to 
identify the most important design parameters in an almost infinite 
combinatorial space of nanoparticle formulations from global research 
efforts in nanoscience and nanotechnology. Thus, informatics has been 
largely recognized as an essential element of nanotech-nology and a 
rational approach to employ weight-of-the-evidence strategies that 
ensure its safe development. In fact, informatics methods that enable 

collaboration, data sharing, unambiguous representation of data, 
semantic (meaningful) search and integration of data, in nanomedicine, 
are impor-tant driving forces for successful mining of knowledge 
from existing nanotechnology and biomedical data resources. This 
knowledge is essential for the rational design and safe application of 
nanoparticle formulations in nanomedicine.

The steady growth of the field of nanomedicine has led to the 
development of nanoinformatics and subsequently the use of data 
mining and machine learning to develop methods to predict both 
functional and structural properties of nanoparticles and then to refine 
medical treatments. Research articles focusing on this area of research 
appear to be published in a wide variety of journals. The methods 
reported attempt to predict a large number of nanoparticle properties 
including, cellular uptake, cytotoxicity, molecular loading, molecular 
release, nanoparticle adherence, nanopar-ticle size, and polydispersity. 
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But also methodological as-pects and available tools and consequences 
of their choose and calibration are object of quantitative statistical 
analysis.

In this context, a set of issues have been addressed using data 
mining and machine learning techniques. Following, in a first step, the 
classification of [2], the first issue is cellular uptake. Nanoparticles are 
used to treat diseases. Cellular uptake has to be understood (related) 
with refer to the nanoparticle molecule, its quantitative and qualitative 
characteristics and with refer to the cells where nanoparticles are used. 
In this case cells are classified in target and non-target cells, with the 
goal to prevent negative effects of a treatment. The knowledge acquired 
using data mining in cellular uptake can help the preparation phases 
of a treatment, the selection of the target cells and to prevent negative 
effects of the treatment.

The second critical issue is cytotoxicity. The use of nanoparticles 
offers new potentialities and a new prospective in diagnostic and 
therapeutic applications. In spite of the rapid progress and the initial 
acceptation of the nanobiotech-nology, all negative effects on the 
human health related to the continued exposition to heterogeneous 
concentration of nano-materials have not yet been completely under-
stood. In the nanometric dimension, particles could result in different 
physic-chemical characteristics if compared with particles of higher 
dimension but with the same composition. Some characteristics of these 
treatments like the area of the involved superficies, the high chemical 
reactivity, and many other variables like the capability to pass through 
the cellular membrane, can be viewed positively but, at the same time, 
could represent a problem if applied to untargeted cells and tissues.. 
To evaluate bad effects of treatment, the citotoxicity of nanoparticles 
is the main element of attention. Citotoxicity is quality of being tossic 
of a nanoparticle for a cell. Data analysis regarding citotoxicity varies 
for type of particles, delivered molecules, target and untargeted cells, 
methodologies used for the treatment. Classifications and relationships 
between the above elements are the goals of them.

Molecular loading level concerns the capability of nanoparticles 
to be a versatile molecular loading platform used as delivery device. 
For example, solid lipid nanopar-ticles (SLNs) are nanoparticulate 
drug delivery systems, which are considered very tempting as drug 
carriers es-pecially for lipophilic drugs. SLNs have the ability to 
protect these drugs and control their release. Moreover, they are 
used as innovative colloidal drug carriers for topical applications, 
especially in virtue of their interaction with the stratum corneum 
(SC) and other skin layers [3]. Accordingly, modelling drug-loading 
in these important nanoparticulate matrices was warranted in order 
to save researchers and formulators the efforts and time spent in the 
wet-laboratory experimentation and to provide them with initial 
and accurate estimations of the fate of their investigated drugs in the 
selected carrier (As a rule of thumb, better loading indicates better 
in-vitro and in-vivo stability of the prepared nanoparticles). Another 
related sce-nario: polydopamine nanoparticles could serve as a 
versatile molecular loading platform for magnetic resonance imaging 
guided combined chemo and photothermal therapy with minimal side 
effects, showing great potential for cancer theranostics. In these entire 
contexts two aspects have to be measured: the effects on target cells 
and systems (tissues or others) and negative effects on untargeted cells. 
Molecular release is another property of nanoparticles. For example 
the controlled release of an anticancer agent from drug nanoparticles 
could be achieved by varying the linker length of dimeric compounds 
as prodrug. The cytotoxicity of the cancer cells was closely related 
to the release rate of drug compounds. This strategy will lead to the 

establishment of the novel delivery system using drug nanoparticles. 
Nanopar-ticle adherence: In these classes the goal is to select the 
right nanoparticles for every group of cells object of a treatment. 
Morphologic characteristic of nanoparticles (for example size) and 
the adherence with target and untarget cells or systems (for example 
cell membrane) influences the cellular uptake efficiency. As can be 
seen above, the size of nanoparticles is a very important molecular 
property that can affect their usefulness in nanomedicine. For instance, 
the size of a nanoparticle has been found to be a very important factor 
determining the fate of the nanoparticle in vivo. Optimization of size is 
also important for the design and development of nanoparticles used 
to treat a variety of tumors, because the size of the nanoparticles affects 
their permeability and retention. Nanoparticles size can change based 
upon solution conditions, manufacturing, drug loading, and release 
of drugs [2]. Last, polidyspersity is a well known issue in particles, 
regarding the composition of the set of them used in a tretatment. 
For example, lipid-based drug delivery systems, or lipidic carriers, are 
being extensively employed to enhance the bioavailability of poorly-
soluble drugs. They have the ability to incorporate both lipophilic and 
hydrophilic molecules and protecting them against degradation in 
vitro and in vivo. There is a number of physical attributes of lipid-based 
nanocarriers that determine their safety, stability, efficacy, as well as 
their in vitro and in vivo behaviour. These include average particle size/
diameter and the polydispersity index (PDI), which is an indication 
of their quality with respect to the size distribution. The suitability of 
nanocarrier formulations for a particular route of drug administration 
depends on their average diameter, PDI and size stability, among 
other parameters. Controlling and validating these parameters are of 
key importance for the effective clinical applications of nanocarrier 
formulations.

Another class of issues is the analysis of the methodology behind 
a treatment. In [4], authors analyze Scanning Probe Microscopy 
where are not clear the parameters behind the building of an optimal 
probe for successive nanotechnology elaborations. The acquisition of 
large hyperspectral data sets bring on new challenges in data storage, 
dimensionality reduction, visualization and interpretation [1-5].

Finally, two things complete the scenarios that lead to the 
composition of the dataset used in the analysis. In all these issues 
often is used the so-called QSAR approach, where QSAR staying for 
quantitative structure-activity relationship. Typically, the first step to 
achieve a QSAR study is the identification of a molecule and to define 
the reference identification. Second step: identify the explanatory 
variable, what we want to understand. Third step is the definition of 
the quantitative characteristics of the molecule and last is the model 
selection and the calculus [5]. Second thing: one of the goal behind the 
use of nanotechnologies for medicine is to use in vitro and in silicio 
experiments to refine and improve successive in vivo treatments.

The goal of this introduction, a tentative to list issues of data mining 
and machine learning in nanomedicine, is an hard task. We started 
reporting the definition of nanotechnology first and nanomedicine after. 
Behind this decision there was a way to communicate this hardness. 
The radius of the problems is wide and its not easy to enclose them in a 
finite envelop. If we accept the above list of issues, there are about four 
phases that could be used to resume every research: the first one is the 
analysis of the tool (or the set of them) used for a treatment, the second 
one is the variables selection. Third: the output of the model that could 
be a classification, a relationship or a prediction. Fourth: the variables 
used in the model. The majority of models try to find a relationship 
between molecules of nanoparticles and human cells. Researches could 
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also be distinguished for types of nanoparticles, variables selected to 
characterize the nanoparticle or a class of variables. For example the 
QSAR methodology selects quantitative and morphologic variables 
about a nanoparticle. The same speech can be done for cells and tissues. 
Here the distinction is between target and untargeted cells. After, the 
selection regards special types of cells and special measurements on them.

Pre-processing of data, variables selection, model 
definition

We said that the goal of this paper is not a deeper investi-gation 
on the nature of nanomedicine. Nevertheless the full understanding of 
the recalled definitions of nanotechnology and nanomedicine give us 
a good starting point to introduce data mining and machine learning 
in nanomedicine. The first aspect to underline is the wide scope of the 
definitions above. They are suitable for a large class of issues, regarding 
many molecular concepts, many cellular concepts and many types of 
applications. This is the first obstacle in comparing applications of 
data mining in nanomedicine. Rarely more than three papers reported 
the use of data mining and machine learning techniques for the same 
context in terms of nanoparticles, cells and target of the research. And 
when this happen, used dataset have a low number of elements and the 
same variable has been collected with diverging techniques for every 
paper. For example, one of the most important reasearch question is 
understanding and prediction of cellular uptake of nanoparticles used 
to treat a desease (for example cancer). At first glance, the enquiry seems 
to be simple: understanding the uptake of nanoparticles in target and 
non target cells to better prepare a treatment and avoid misbehaviours. 
This is not the real case: all papers concluded the method of choice for 
the quantification of nanoparticles (NPs) uptake mainly depends on 
the research question, the available analytical devices as well as on the 
type of NPs 

of interest. As of that, it is not possible to recommend one specific 
technique that could be used for quantification of all the different 
NPs types which exist nowadays. As well known from the convincing 
evidence from the literature, physicochemical properties of NPs such 
as their size, shape, core material and surface functionalization have 
a strong impact on NP cellular interaction including uptake, intracel-
lular fate and induction of cell response but also require very different 
analytical methods [3].All these aspects impact in the task of comparing 
studies and then assessing data mining and learning techniques for the 
same inquiry.

Very little work has been reported on the use of data mining 
and machine learning methods to predict cytotoxicity of organic 
nanoparticles. One potential reason for this is the lack of databases or 
publications analyzing the cytotoxicity caused by a variety of organic 
nanoparticles. Another reason is the variability of biological models 
in different laborato-ries. Factors such as potential aggregation of 
nanoparticles, variations in the media used, cell origin and passage, 
among others further contribute to variability in the data obtained. 
Another commonality observed among many of the research articles 
presented in this review is the limited sample size related to the high-
dimensionality of the dataset used for analysis. Several consequences 
can arise due to lack of data, including overfitting, difficulty in 
demonstrating reliability, generalizability, and applicability of the 
predictive models to other nanoparticles, and class imbalance. Vali-
dation of a predictive model can be problematic when the sample size 
is limited and the variables representing those samples have high-
dimensionality. A simplistic and common method for overcoming the 
issue of high-dimensionality of a dataset is to utilize variable (feature) 

selection to reduce the number of variables analyzed in the predictive 
model. Other automated approaches, with defined properties, are PCA 
and bayesian variables selection, below recalled.

Class imbalance is a challenging problem for the data mining 
community. It occurs when the samples representing one class is 
much lower than those representing other classes. The simplest way to 
overcome this issue is to ensure that there is a balanced representation 
of the members of each class present in the dataset, but this is a 
significant challenge in nanoinformatics as the lack of large well 
curate datasets seriously limits the amount, quality, and variety of data 
available. We analyze this task in standardization. Class im-balance has 
to be considered also in model selection: linear regression based models 
will suffer whereas unsupervised cluster analysis methodologies have to 
be preferred, speaking about cancer nanomedicine, notes that consid-
erable technological success has been achieved in the field, but the main 
obstacles to nanomedicine becoming a new paradigm in cancer therapy 
stem from the complexities and heterogeneity of tumour biology, an 
incomplete understand-ing of nanobio interactions and the challenges 
regarding chemistry, manufacturing and controls required for clinical 
translation and commercialization.

Three methodologies/tools to front these classes of problems are: 
standardization, variable reduction and meta-analysis [6-10].

Data sharing and standardization

The need of more coherence and structured paths that lead the 
conduct of nanotechnology research has been previously suggested. 
Paper [6] deals with this problem. It confirms that the lack of common 
reporting standards and non-uniformity of information reported are 
significant barriers to data shar-ing and re-use. And it suggests that 
the Nanotechnology Working Group (Nano WG) of the US National 
Institutes of Health National Cancer Informatics Program (NCIP) has 
been focused on addressing these issues.

The Nano WG, which includes representatives from over 20 
organizations including government agencies, academia, industry, 
standards organizations and alliances - has de-veloped ISA-TAB-
Nano4,5, a general framework for rep-resenting and integrating 
diverse types of data related to the description and characterization of 
nanomaterials using spreadsheet or TAB-delimited files. Nanoparticle 
character-ization studies have many of the same challenges as omics-
based (metabolomics, genomics and functional genomics, for example) 
assays such as high data volume and variety, multiple experimental 
end points, and complex protocols and study samples. Therefore, ISA-
TAB-Nano is based on the ISA-TAB format developed and used by 
the ISA Commons to share datasets in a diverse set of life sciences and 
in particular omics data. The ISA-TAB-Nano extension uses the three 
primary files of ISA-TAB investigation, study and assay (ISA) files as 
well as an additional file called the material file.

The paper underline that delivering a community-driven 
specification for nanotechnology data is the first phase of a proposed 
process. To be useful, ISA-TAB-Nano must be implemented in tools 
and by databases to assist researchers in reporting their data while 
shielding them from unneces-sary complexity. And new tools are to 
be developed.

To address the challenges of data sharing, efforts are un-derway, 
also by the National Cancer Institute (NCI) and collaborating 
organizations to define standards for repre-senting nanoparticles and 
their characterizations via the establishment of a Nanotechnology 
Working Group (Nano WG) and the development of nanoinformatics 
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resources, such as the cancer Nanotechnology Laboratory web por-tal 
(caNanoLab). The goal of caNanoLab is to provide a resource where 
primary nanotechnology research data are no longer disparate islands 
affiliated with their originators, but standardized and shared across the 
scientific and clinical community [7]. The paper confirms that progress 
in the field has been impeded by the lack of a knowledge-management 
infrastructure as well as the lack of standards to describe the complexity 
of nanoparticles and their highly diverse nature. Other institutions 
support standardization. The Nanoma-terial Biological Interactions 
(NBI) knowledgebase was de-veloped in 2008 to directly address the 
need for a compara-tive, integrative database information system, 
driven by the desire to promote the safe development of nanomaterials 
and nanotechnologies. NBI knowledgebase is functionally comprised 
of two components: a nanomaterial library and analysis tools. One of 
the focuses of NBI understands the risks associated with nanomaterial 
exposure. The Molecular Imaging and Contrast Agent Database 
(MICAD) is an on-line resource that provides information about 
imaging and contrast agents used with in vitro, animal or human studies 
that have been published in peer-reviewed scientific journals. MICAD 
also provides information about nanoparticles that are intended for use 
as imaging and contrast agents. InterNano is a web portal designed for 
sharing informa-tion on advances in applications, devices, metrology, 
and nanomaterials, in order to facilitate the commercial devel-opment 
and/or marketable applications of nanotechnology. InterNano gathers 
information from multiple sources, adds original commentaries 
on these sources, and provides news highlights, feature articles and 
assessments of the current state of practice in nanomanufacturing. A 
longer list of Organizations devoted to facilitate data sharing and stan-
dardization can be found here [11-13] (Table 1).

Meta-analysis

Currently, most of the nanomedicine data are found in 
textual sources such as journal articles. It is inherently dif-ficult 
to process information from textual data sources. This difficulty 
is further exacerbated by several factors that are specific to the field 
of nanomedicine. First, the nanomedicine field lacks standard 
terminologies for describing elements of nanomedicine research and, 

in particular, does not have a systematic nomenclature for naming 
nanoparticle-based formulations. Second, there are substantial gaps in 
nanomedicine physical, chemical, and biological data due to inadequate 
characterization of nanomaterials. These gaps are directly related to the 
absence of minimum information standards for nanomedicine data 
reporting to ensure data quality, data completeness and data reliability 
in journal articles and databases. Third, the nanomedicine field suffers 
from data irreproducibility due to the poor availability of standardized 
protocols for preparation and characterization of nanomaterials. 
Fourth, the lack of standardized formats for exchanging data hinders 
efficient sharing and transfer of information about the chemical 
composition, synthesis, characterization, toxicity, and safe handling 
of nanomateri-als. Finally, there is a lack of raw data (versus analyzed 
data) which is necessary for renormalizing data from different sources 
for consistency for the successive analysis [13].

Meta-analysis could be one way to solve, at least partially, these 
problems. The goal of meta-analysis is to combine results from multiple 
scientific studies in a stronger one. Two aspects have to be considerated: 
the general lack of data in nanomedicine is not easy to solve with this 
approach. Second: doubts about this family of methodologies were 
recently expressed and regard the mechanisms of paper selection and, 
generally speaking, paper publication.

In 2016 shows a meta-analysis of pre-clinical studies comparing 
tumor accumulation of cancer nanomedicines. They used SciFinder 
and Google Scholar databases and the search term nanoparticle 
delivery, and identified 224 manuscripts. The data from 117 reports 
were tabulated and standardized to calculate the DE (nanoparticle 
delivery efficiency) based on a non-compartmental linear trapezoidal 
analysis model, a method to interpolate them. [9] shows a meta-analysis 
of clinical and preclinical studies comparing the anticancer efficacy of 
liposomal versus conventional non-liposomal doxorubicin. Results 
are controversial, demon-strating enhanced therapeutic efficacy of 
liposomal vs. free doxorubicin in pre-clinical studies but not in clinical 
studies [14-20].

Nanomaterial type Nanomaterial entities Description
Biopolymer 13 A polymer fomed by a living organism
Carbon block                      2 A material produced by the incomplete combustion of carbon-rich organic fuels in low oxygen condition

Carbon nanotubc 50 A nanotube comprised of one or more graphite sheers (graphene) of hexagonal arrays of carbon rolled into seamless cylinders 
with capped ends

Carbon particle 1 An amorphous nanopowder formed by laser techniques

Dendrimer 74 A polymeric molecule that has a highly branched, three-dimensional tree-like architecture, synthesized with monomers where 
shells of branched molecules are added in discrete steps to a central core

Emulsion 88 A colloid in which both liquids are immiscible with each other
Fullerence 16 Any cagelike, hollow molecule composed of hexagonal and/or pentagonal groups of carbon atoms

Liposome 34 A supramolecular structure which is a closed vesicle that forms on hydration of dry phospolipids above its transition 
temperature

Metal oxide 186 A nanomaterial composed of metal oxide
Metal 132 A nanomaterial composed of metal
Meralloid 36 A nanomaterial with properties between a metal or non-metal
Nanohorn 7 A single-walled carbon nanostructure with anirregular horn like shape
Nanorod 33 A nanoscale rod composed of either metallic or semiconductor material or a mixture of both

Nanoshell 1 A three-dimensional nanostructure that is composed of a spherical core surrounded by a few nanometers in thickness. If the 
shell is made of metal, then it is called a metallic nanoshell

Polymer 188 A nanomaterial composed of single or multiple rnonomers

Quantum dot 73 A nanometer site fragment of semiconductor material. whose excitons (electron-hole pairs) are confined in three spatial 
dimensions

Silica 43 A nanomaterial composed of a silicon oxide

Table 1. Summary of data available in caNanoLab
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Principal component analysis and dimensional reduction

One of the main problems in NPs dataset is their high 
dimensionality compared with the low number of statistical units. 
Principal component analysis is a method that can be used to reduce 
dimensionality of the dataset. The set of original variables, often 
with an high number of members with repetitions and redundancy, 
is replace with a lower number of new uncorrelated variables that 
can be view as variable profiles, latent in the original dataset. PCA 
components need to be interpreted: analysis is not automated and the 
new profiles need to be discovered considering relationships between 
old and new variables [14]. studied relationships between size and 
surface coverage change in nanomedicines and their behaviour in 
vivo. A principal component analysis (PCA) was carried out. A total 
of 11 variables measured for the different types of NPs were used for 
this analysis (discriminant for NP characterization in this study. Then, 
the method was able to provide direct information on the capacity of 
a NM surface to repel a series of proteins. Then, we can distinguish 
according to PC2 a difference between NPs A1, A2, R2 and R1, R3. 
This component is mainly driven by the size of NP and the tendency 
to adsorb aprotinin, which is globally weak but surprisingly a bit 
higher for NPs R1 and R3. These data showed that size and surface 
curvature are not sufficient by themselves to explain adsorption of 
proteins. However, the macromolecular grafting appears to be decisive 
for such interactions. Only 5 statistical units were used for ACP, that 
is atypical for this methodology. Units are types and not examples of 
types [4].	use PCA to reduce the high number of variables coming 
from a scanning probe. Authors criticize the fact that PCA components 
lack well-defined physical meaning and propose a decomposition 
based on Bayesian inference to front the problem. [15] make a risk 
analysis of cytotoxicity for two classes of nanomaterials. Twentyfour 
measurements from five different TiO2 features, and 18 measurements 
from six different ZnO features, were obtained from the experimental 
data sets. A QSAR analysis was done: a study to determine if some of 
the physical properties of TiO2 or ZnO strongly relate to each other. To 
this end, principal component analyses (PCA) and correlation analyses 
was used, which involved all of the input variables and the response 
variable. Because the different datatypes were measured in different 
units and show significant differences in their variances, the data were 
normalized by standardizing the individual variances. Subse-quent 
PCA showed that the first three principal components explain more 
than 90

As viewed above, Bayesian methods are an alternative to PCA 
for variables selection in a model. The issue is particularly studied in 
QSAR, where many quantitative characteristics could be collected for 
a nanoparticle but these are strongly related and only a subset could 
be used for predictions. [16] used a Bayesian approach to carry out 
this task. It employed a specialized sparse Bayesian feature reduction 
method based on an EM algorithm with a Laplacian prior to select a 
small set of the most relevant descriptors for modelling the response 
variables from a much larger pool of possibilities.

Linear models
Typically the nature of data variables and the hypothesis about 

relationships linking them determines the selection of the linear model. 
Classical multilinear regression model indicates that all variables are 
numerical and the explained variable (for example the level of cellular 
uptake) is a linear combination of the predictor variables (measurement 
about the particles). Linear discriminant analysis (LDA), normal 
discriminant analysis (NDA), or discriminant function anal-ysis are 

a generalization of Fisher’s linear discriminant, a method used in 
statistics, pattern recognition and machine learning to find a linear 
combination of features that charac-terizes or separates two or more 
classes of objects or events. The resulting combination may be used as a 
linear classifier. LDA is closely related to analysis of variance (ANOVA) 
and regression analysis, which also attempt to express one dependent 
variable as a linear combination of other fea-tures or measurements. 
However, ANOVA uses categorical independent variables and a 
continuous dependent variable, whereas discriminant analysis has 
continuous independent variables and a categorical dependent variable 
(i.e. the class label). Logistic regression and probit regression are more 
similar to LDA than ANOVA is, as they also explain a categorical 
variable by the values of continuous independent variables. These other 
methods are preferable in applications where it is not reasonable to 
assume that the independent variables are normally distributed, which 
is a fundamental assumption of the LDA method.

Using the logistic regression model, Liu et al. [20] classified 
cytotoxicity by examining the plasma membrane integrity when 
transformed bronchial epithelial cells (BEAS-2B) were submitted to 
nine different metal oxide nanoparticles. For the development of the 
model, a set of 10 nanoparticle descriptors was selected and measured 
experimentally. These descriptors include simple basic descriptors 
(number of oxygen atoms in the metal oxide, number of metal atoms 
in the metal oxide, metal oxide molecular weight, and atomic mass of 
the metal), stability and reactivity information (atomization energy), 
element group properties (periodic table group and period of the metal 
in the metal oxide), simple geometric descriptor (nanoparticle primary 
size), and indicators of surface charge and aggregation tendency (zeta 
potential and isoelectric point). Additional experimental con-ditions 
were taken into account by adding measured values for a set of four 
different concentrations as input parameters of the model. The paper 
does not explicitly indicates the number of samples used in the dataset, 
however art. 2 retraces that 83 samples were used. Considering logistic 
regression characteristics, All possible combinations of the descriptors 
and concentrations were analyzed for their nano-QSAR models, 
which generated accuracies ranging from 93 to 100Often papers get 
more than one model to consider fitting between data and the model 
and then to use the better one. [15] studies how selected metal oxide 
nanomaterial structural features perturb cytoplasmic leakage. They 
made a comparative study of two linear based mathematical models: 
multivariate linear regression and linear discriminant anal-yses (LDA) 
classification. The performance was evaluated with respect to the ability 
to predict a specific cellular response, i.e., lactate dehydrogenase (LDH) 
release after exposure to metal oxide nanomaterials. The multivariate 
linear regression represents the class of models attempting to detect 
trends in data, while LDA classification is an example of a method 
that aims at separating data based on the different levels of biological 
response.

Although well known and easy to understand in their results, linear 
models not always give good results. Linear models suffer limits listed 
above regarding the high dimensionality of the dataset compared with 
the low number of samples. Overfitting, multicollinearity, low levels of 
R often affect studies and often are not fully considered.

Clustering
Linear models applied with non quantitative variables act as 

classifier, but are considered supervised classifiers given the linear 
nature of the model in its causal variables. Unsupervised classifier 
use the concept of distance defined considering available explicative 
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variables and made a set of clusters. Next step is to understand the 
effective clustering profile and use it to learn.

In pattern recognition, the k-nearest neighbours algorithm (k-NN) 
is a non-parametric method used for classification. The input consists 
of a parameter k and a training set of objects for which the class or 
object property value is known. Given a distance definition and a new 
object, the k closest elements in the training set are considered (k-set) 
and the new object is included in the most frequent class in the k-set.

Liu et al. [21] used a variety of algorithms (IBK) in an effort to 
predict embryonic zebrafish post-fertilization toxic effects of several 
nanoparticles, including metal nanoparticles, dendrimers, metal oxides, 
and polymeric materials. IBK is a K-nearest neighbour predictor that 
assigns an input to the most common output label among its K nearest 
neighbours.

A nave Bayes (NB) classifier is an important classifier for data 
mining and applied in many real world classification problems because 
of its high classification performance. It is a simple probabilistic 
classifier based on the Bayes theorem, strong (naive) independence 
assumptions, and a preselected set of independent feature models. 
Nave Bayes classification with kernel density estimation, or so called 
flexible Bayes is an extension of the nave Bayes classifier which uses a 
kernel density estimation where the density of each continuous variable 
is estimated averaging over a large set of kernels. The method performs 
well in domains that violate the normality assumption and, in general, 
this flexible Bayesian classifier generalises better than the version that 
assumes a single Gaussian. In opto-magnetic Imaging Spectroscopy 
was applied in vitro and in vivo on cervical, colon, and skin samples. 
Research included 280 cervical samples, 112 colon samples and 96 skin 
samples. The opto-magnetic spectra showed a good differentiation 
between healthy and cancerous samples based on characteristic 
OMIS spectra intensities and peak positions. It is shown that spectra 
intensity decreases to-wards lower values in cases of precancerous and 
cancerous tissues in all three kinds of epithelial tissue. Classification 
results, using naive Bayes classifier, proved a high degree of accuracy in 
cancer detection (skin 91.67) [21-23] (Figure 1).

Artificial neural networks
The need of unsupervised classifiers and predictors leads to neural 

networks (ANNs). ANNs are computational sim-ulations of human 
neural networks for modeling highly nonlinear systems in which 
the relationship between the variables is unknown or very complex. 
Artificial neural networks (ANNs) become a widely used methodology 
in nanomedicine, often to create accurate predictions. A neural network 
is formed by a series of neurons (or nodes) that are organized in layers. 
Each neuron in a layer is connected with each neuron in the next layer 
through a weighted connection. The value of the weight wij indicates 
the strength of the connection between the ith neuron in a layer and the 
jth neuron in the next one. The mathematical process through which 
the network achieves learning can be principally ignored by the final 
user. In this way, the network can be viewed as a black box that receives 
a vector with m inputs and provides a vector with n outputs [24].

In spite of the enthusiasm that went with ANN, limits of this 
approach have to be kept in mind. First of one, ANN methods are 
hungry of data and this is a hard limit in medicine. Overfitting and 
associated limits in generalization processes are always to be considered. 
The black-box nature of ANN is another hard limit in assisted health, 
where physician needs quantitative methodologies to support their 
decisions but they cannot be used to substitute them [25,26].

In [16] the relationships between the descriptors and the response 
variable were derived using Bayesian regularized neural networks. 
These control the complexity of models to provide a balance between 
bias (model is too simple to capture the underlying relationships in the 
data) and variance (model is overly complex and fits the noise as well as 
the underlying relationships). Bayesian regularization provides a near-
optimum method of regularizing nonlinear neural network regression 
models.

Final considerations
In this paper we explored examples of use of quantitative techniques 

(data mining and deep learning) in nanomedicine. The sparse nature 
of issues regarding many types of nanoparticles, molecules and cells, 
many types of measurements and used instruments and probes, defines 

Figure 1. Source [24]
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a starting phase for nanomedicine with a need of standards. QSAR 
methodologies need a strong data preparation, with attention to the 
number and the nature of used variables. Also the number of available 
samples has to be considered to select the model for the analysis. We 
analyzed PCA ad bayesian methodologies oriented to dimensional 
reduction. After we analyzed three clasess of methodologies: linear 
regression models, cluster analysis and artificial neural networks. The 
first class of models works with sparse data and for a limited set of 
contexts. Artificial neural networks also need large datasets. Cluster 
analysis is a general class of methodologies but need deeper exploration 
to understand effective relationships.

For every methodology there are contexts where it was successful 
in discovery a relationship or in simplify the adoption of a model, 
but we still aren’t in a phase where successive studies reuse the same 
methodology, confirming its general validity in a context and for a class 
of problems. We thing there is a step that separates all these methodolo-
gies to this analytical phase: the biological process behind a treatment, 
also in its nano dimension, has a temporal evolu-tion that: 1) cannot be 
ignored, 2) cannot be considered with too complex models that quickly 
evolve in mathematically intractable problems. The gap to fill is the 
research of a new effective and feasible way between these two extreme 
approaches (Figure 2).
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