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Forensic histopathology of the carotid body
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Abstract
The aim of the present study is to provide a review of main histopathological changes of the carotid body with potential forensic interest. Developmental changes 
in the carotid body have been reported in Sudden Infant Death Syndrome. SIDS victims frequently show alterations in respiratory regulation which may partly be 
ascribed to peripheral arterial chemoreceptors. Histopathological findings regarding cellular populations, connective components and inflammatory infiltrates have 
also been observed in opiate-related deaths. Better awareness about the structure of the carotid body and possible histopathological changes may be useful also for 
histopathological investigations in other cases of forensic relevance. 
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Introduction
The carotid body is the main arterial chemoreceptor directly 

involved in the control of respiratory and cardiocirculatory functions. 
It is located at the carotid bifurcation and consists of lobules separated 
by connective tissues, each one is organized in clusters of two different 
populations of cells (Figure 1). The first one is represented by type I (or 
chief) cells, in turn classified into light, dark and pyknotic cells. They 
are the real chemoreceptors which store and release neurotransmitters 
and neuromodulators, which are contained in dense-cored granules 
(Figure 1C-D). The second type is made by type II (or sustentacular) 
cells, which are considered supportive cells [1-3]. The carotid body 
is highly susceptible to reductions in pO2 pressure and pH and to 
increases in pCO2 pressure, in response of which rises the frequency 
and the volume of ventilation [4-6]. The sensory innervation of 
the carotid body is given by the carotid sinus nerve, a branch of the 

glossopharyngeal nerve. Moreover, the carotid body receives post-
ganglionic sympathetic nerve fibers from the superior cervical ganglion, 
mainly acting on the microvascularization, and some parasympathetic 
fibers [6,7].

The carotid body may undergo structural and functional 
modifications in response to a series of environmental stimuli, some 
of which may show forensic implications. The carotid body, for 
instance, may be affected by chronic hypoxia, a condition which may 
involve humans living at high altitudes and therefore exposed to low 
atmospheric air pressure. The adaptive response mainly produces 
glomic hypertrophy due to increased number of type I cells. In 
particular, it has recently been highlighted that, as a consequence of a 
chronic hypoxic stimulus, type II cells may differentiate into precursor 
neural cells (also expressing nestin) which then give rise to mature 
glomus cells [8,9]. In this sense, type II cells are considered the stem 
cells of the carotid body [10]. 

The structure and function of the carotid body has also been reported 
to change along postnatal development and ageing. In particular, 
during the postnatal period, it has been demonstrated an increase 
of the total volume of the carotid body, accompanied by a progressive 
increment in vascularization [4,11]. Furthermore, ultrastructural studies 
revealed increased numbers of dense-core granules of type I cells and type 
I-type II cells synapses.  The innervation of the carotid body has also 
been reported to develop in the postnatal period, due to an increase in 
afferent nerve endings and a decrease in the efferent ones [11].

The carotid body in sudden infant death syndrome
In contrast, defects in carotid body development or maturation 

have been associated with several neonatal respiratory deficiencies, 
such as sudden infant death or congenital central hypoventilation 
syndrome. 

Figure 1. Normal structure of the carotid body. A: Carotid body of an adult human 
subject. B: Higher magnification of a lobule, showing the coexistence of roundish type 
I cells (arrows) and elongated type II cells (arrowheads). C-D: Electron micrographs of 
carotid body of 2-weeks-old rat showing a cluster of type I cells (C) and many dense-cored 
granules in the cytoplasms of adjacent type I cells (D). (Scale bars: A: 1 mm; B: 75 µm; C: 
2.5 µm; D: 1 µm).
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Hypotheses of alteration of reflexes triggered by peripheral arterial 
chemoreceptors have also been reported for Sudden Infant Death 
Syndrome (SIDS), a condition which is frequently put in differential 
diagnosis with homicide or accidental death [4,5,12]. It has been 
evidenced, for instance, that the period of postnatal maturation of the 
carotid body seems to correspond with the age range in which the risk 
of SIDS is highest [13,14]. Moreover, a series of cytochemical findings 
have been reported in the carotid bodies of SIDS victims [4,5,15].

The Sudden infant death syndrome (SIDS) is the sudden 
unexpected death of infants under 1 year of age, which remains 
unexplained after a thorough investigation, including performance 
of a complete autopsy and review of the circumstances of death 
and the clinical history [16]. Since the carotid body plays a pivotal 
role in the control of cardiorespiratory functions, prolonged sleep 
apnea, excessive periodic breathing and reduced hyperventilatory 
activity under hypoxic conditions (conditions increasing the risk of 
SIDS) could be ascribable to defective carotid body development. In 
literature, animal experimental studies have reported that carotid body 
denervation in the first postnatal period may cause the alteration of 
rhythmic ventilation and possibly unexpected deaths [17]. 

From a morphological point of view, conflicting observations have 
been reported about possible increases or decreases in the volume 
of the carotid body of SIDS victims [18,19]. Higher percentages of 
sustentacular and progenitor cells have been reported by other authors 
[20-22]. Besides, a prominent reduction or absence of dense-cored 
granules has been highlighted with ultrastructure analyses [21]. As it 
regards the content of various neurotransmitters, some reports showed 

conflicting results. Perrin et al. (1984) [23] reported ten- and  three-fold 
higher concentrations of dopamine and noradrenaline, respectively, in 
SIDS carotid bodies but these findings were not confirmed by another 
research group [24].

Histopathology of carotid body in opiate-related deaths
Ageing is another situation in which the carotid body undergoes 

a series of structural and functional changes. These alterations 
include increase in interlobular and intralobular connective tissue 
and in type II cells, together with presence of inflammatory infiltrates 
[25,26]. Similar modifications of the carotid body structure have been 
described also in some clinical pathologies. For example, histological 
analyses demonstrated a consistent enlargement of the glomic lobules 
due to high proliferation of type II cells resulting in an increase in total 
volume of the carotid body in subjects affected by cardiac hypertrophy. 
These hyperplastic effect has been also observed in other pathologies 
like bronchial asthma, chronic bronchitis and emphysema [27].

In a forensic context, particular attention has been put by our 
group to the histopathological changes of the carotid body in opiate 
addiction [6,7,25,26]. Morphometric analyses have demonstrated an 
increase in the total volume of the carotid body in opiate-related deaths 
with respect to age-matched controls. Moreover, structural changes 
similar to age-related changes have also been seen, i.e., increases in 
interlobular and intralobular connective tissue, together with increased 
number of type II cells. These changes have been ascribed to heroin-
dependent progressive arteriosclerosis of glomic arteries [24]. The 
above morphometric analyses also revealed histopathologic alterations 
specific of opiate-addiction and not present in ageing, i.e., decreased 
percentage of light cells. Apart from increased content in connective 
tissue, the disposition and complexity of the connective components 
have also been recently evaluated with reference to novel image 
analyses based on analysis of dispersion (Morisita’s index), gray level 
co-occurrence matrix (entropy, angular second moment, variance, 
correlation) and fractal (fractal dimension, lacunarity) parameters. 
Significant changes were found in all the above morphometric 
parameters with respect to age-matched controls, indicating higher 
complexity and irregularity of the connective tissue disposition. It was 
also intriguing that carotid bodies of opiate-related deaths showed 
higher fractal dimension and lower lacunarity also with respect to aged 
cases, confirming a branching of the connective components even 
more irregular than in aging [6]. 

Apart from the above histopathological changes in the parenchymal 
and connective components of the carotid body, we also demonstrated 
in opiate-addiction an higher incidence of chronic carotid glomitis, a 
pathological condition defined by the presence of lympho-monocyte 
aggregates throughout the carotid body. Such alterations have been 
previously reported only in aged persons and furtherly support the 
hypothesis of degenerative mechanisms in the carotid body of opiate 
addicted. In particular, in heroin addict subjects, chronic carotid 
glomitis could arise as inflammatory response against infective 
agents, heroin itself and other drugs, resulting in modification of the 
excitability of the glomus cells as well as their survival, proliferation 
and differentiation [5,7]. Inflammatory infiltrates resulted to be 
preferentially T cells (CD3+), in particular CD8-positive T suppressor/
cytotoxic cells even if T helper lymphocytes, Natural killer cells and 
macrophages have also been detected [7] (Figure 2).  
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