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Abstract
Over past decades, a frequent co-morbidity of cerebrovascular pathology and Alzheimer’s disease pathology has been observed. Accordingly, much evidence has been 
reported which indicates that microvascular endothelial dysfunction, due to cerebrovascular risk factors (e.g., atherosclerosis, diabetes, obesity, hypertension, smoking, 
aging), precedes cognitive decline in Alzheimer’s disease and contributes to its pathogenesis. These findings indicate that preservation of healthy cerebrovascular 
endothelium can be an important therapeutic target. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. 
By incorporating such drug(s) into the targeted “lipid-coated microbubble/nanoparticle-derived” (LCM/ND) lipid nanoemulsion type, one obtains a multitasking 
combination therapeutic for translational medicine. This multitasking therapeutic targets certain cell-surface scavenger receptors, mainly class B type I (i.e., SR-BI), 
making it possible for various Alzheimer’s-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface 
SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable 
LCM suspension); such LCM would facilitate accomplishing transcranial sonoporation (if additionally, desired for the Alzheimer’s patient) and assist in advancing 
sonoporation to the clinic.
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Introduction
The fundamental involvement of the cerebrovasculature in the 

pathogenesis of common dementias, widely reported in the biomedical 
literature, has recently been reviewed (e.g. [1,2]). In fact, vascular 
brain lesions are very common in people over 70 years old, and a large 
proportion of dementia cases may be attributable to cerebrovascular 
disease. Small-vessel disease is commonly found in patients who have 
other brain pathologies, such as the plaques and tangles associated with 
neurodegenerative disease; small-vessel disease also increases the risk 
of Alzheimer’s disease. Accordingly, vascular cognitive impairment 
and dementia (VCID) is the second leading cause of dementia behind 
Alzheimer’s disease, and is a frequent co-morbidity in the Alzheimer’s 
patient [3-9]. On a worldwide basis, 36 million people had dementia in 
2010; of these dementia patients, 60%–80% have Alzheimer’s disease 
[4,10,11].

Central role of endothelial dysfunction

It has been reported that nanocomplexes can be readily transported 
into brain capillary endothelial cells (bovine and porcine) via SR-
BI receptor-mediated endocytosis [12-15]. Accordingly, endothelial 
modulation and repair become feasible by pharmacological targeting 
[16-26] via SR-BI receptors (cf. [25]). As the detailed review by 
Mahringer et al. [27] points out, the blood-brain barrier (BBB) is 
equipped with several endocytic receptors at the luminal surface 
(i.e., the capillary endothelial membrane), including the type BI 
scavenger receptor (SR-BI). These authors explain that, after i.v. 
injection, surfactant/lipid-coated nanoparticles apparently bind 
to apolipoproteins (for example, apoA-I in blood plasma) and are 
subsequently recognized by the corresponding lipoprotein receptors, 
namely (in the presence of apoA-I), SR-BI type scavenger receptors at 
the BBB [1].

Furthermore, very recently published experimental work (in 
human-endothelial-cell monolayer cultures as well as in three-
dimensional tissue-engineered human vessels) has demonstrated 
in detail [28] that HDL, acting via scavenger receptors (class B type 
I, i.e., SR-BI), blocks β-amyloid uptake into endothelial cells – in 
experimental monolayers as well as, the authors argue, in the human 
cerebrovascular endothelium [1,2]. These authors also point out that 
SR-BI is the principal HDL receptor on (human brain microvascular) 
endothelial cells and activates several HDL-signaling pathways (in 
addition to mediating selective cholesterol uptake) upon HDL docking. 
The authors observed that inhibiting SR-BI binding with a specific 
blocking antibody abolished the ability of HDL to suppress “β-amyloid-
induced” monocyte adhesion to (human microvascular) endothelial 
cells [28]. It is worth noting that such blood-borne human monocytes 
(with their high expression of CLA-1 (the human SR-BI ortholog [29]) 
and/or SR-BI, as well as their ability to differentiate into macrophages 
to elicit an immune response locally) have recently been reported [30] 
(cf. [31]) to reduce Alzheimer’s-like pathology and associated cognitive 
impairments in transgenic mice having Alzheimer’s-like symptoms 
(refer [1] for a review).

Fung et al. [32] separately report that SR-BI mediates the uptake 
and transcytosis of HDL in brain microvascular endothelial cells (i.e., 
across the blood-brain barrier). These investigators further argue 
that manipulation of HDL transcytosis across the BBB to increase 
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of symptoms. Moreover, abnormalities in brain glucose homeostasis 
may begin several years before the onset of clinical symptoms [87].

In summary, endothelial cells are the main component of the 
BBB, which is seriously disrupted in various neurological pathologies 
– including many neurodegenerative disorders [89-91]. An early 
BBB breakdown and/or dysfunction has been documented [92] in 
Alzheimer’s disease before dementia, neurodegeneration, and/or 
brain atrophy occur, and investigators have reported that targeting 
the BBB can influence the course of neurological disorder [92]. Hence, 
vascular-targeted therapies become plausible for the prevention 
and treatment of common dementias [4,36,89,93-95]. In respect to 
vascular tone, vasodilators (nitric oxide, acetylcholine) are repressed 
while vasoconstrictor (endothelin-1) is enhanced, thus contributing 
to endothelial dysfunction in Alzheimer’s disease [90,96]. Also, 
β-amyloid can induce apoptosis and/or necrosis of brain endothelial 
cells. Presence of β-amyloid, as well as tau protein oligomers, leads 
to accumulation of inflammatory molecules in microvessels – which 
further fosters endothelial dysfunction [90,97-99]. Other component 
cell types of the neurovascular unit are affected as well in Alzheimer’s 
disease [90]. For example, deposition and aggregation of β-amyloid 
within vascular smooth muscle cells leads to inflammation, oxidative 
stress, impaired vasorelaxation, and disruption of BBB integrity. At 
the same time, midlife vascular-risk factors such as hypertension, 
cardiovascular disease, diabetes, dyslipidemia, and obesity all increase 
the relative risk for Alzheimer’s disease [89,100-103]. These co-
morbidities are all characterized by low and/or dysfunctional HDL, 
which itself is an Alzheimer’s risk factor. Namely, (in addition to 
long-published lipid transport,) HDL regulates vascular health via 
modulating vasorelaxation, inflammation, and oxidative stress as 
well as promoting endothelial cell survival and integrity [36,102,104]. 
Since SR-BI has already been identified as a major receptor for HDL 
(with their major apolipoprotein (apo)A-I) as well as for the earlier-
described LCM/ND nanoemulsion [1,2], this multitasking lipid 
nanoemulsion can arguably serve as a targeted, apoA-I-based, (SR-BI 
mediated) therapeutic agent for common (late-onset) dementias (cf. 
[28,33,35,37-42]).

Promising developments regarding supplementary 
neurotherapy using targeted sonoporation

A completely separate and additional advantage of such LCM/
ND (drug-delivery) nanoemulsion(s) stems from the characteristic 
lipid-coated microbubble (LCM) subpopulation existing in this 
nanoemulsion type [1,2]. This characteristic LCM subpopulation 
would now be available to substantially reduce the acoustic power 
levels needed for accomplishing endothelial sonoporation (refer [1] 
for a review), if additionally desired for further targeted (transcranial) 
neurotherapy (cf. [105-120]) of the Alzheimer’s patient. Over the past 
decade, neuroscientists have been exploring the use of ultrasound 
in combination with preformed (intravenous) microbubbles to 
temporarily open the BBB [1,2,121-126], allowing drugs or the 
immune system to target brain tumors or Alzheimer’s brain plaque 
in vivo effectively, repeatedly, and safely [127-133] in animals up to 
primates [127,134] and even in humans [134]. It is believed that (non-
thermal focused) ultrasound pulses cause the (intravenously injected) 
preformed microbubbles to expand and contract (with acoustic 
pressure rarefaction and compression, respectively) against the BBB 
structure, thereby loosening the tight junctions [135,136] between 
endothelial cells which form the structural core of the BBB. Recently, 
this research approach was employed by Leinenga and Gotz [135] who 
utilized focused (transcranial) ultrasound coupled with intravenous 

delivery of plasma apolipoprotein A-I (apoA-I) may, in turn, facilitate 
increasing the transport of “HDL-like synthetic particles” containing 
therapeutic drug across the BBB to treat neurodegenerative disorders 
such as Alzheimer’s disease [32]. Therefore, the recently reviewed 
[1,2] “lipid-coated microbubble/nanoparticle-derived” (LCM/ND) 
nanoemulsion (refer below) can arguably serve as a targeted, apoA-I-
based, (SR-BI mediated) therapeutic agent for Alzheimer’s disease and 
vascular dementia [28,33-35] (cf. [36-42]).

Targeted drug treatment for early dementia

This targeted-drug-delivery therapeutic approach, using the 
proposed LCM/ND lipid nanoemulsion for treating the more common 
(late-onset) dementias, receives added impetus from continual findings 
of cerebrovascular pathology [43–53] and an apparent endothelium-
dysfunction [33–41,49,54–60] in both Alzheimer’s disease and its 
major risk factors [53–72]. By incorporating drug candidates (such as 
Edaravone, DHA, or antibody therapeutics) into the LCM/ND lipid 
nanoemulsion type, known to be a successful drug carrier [73,74], 
one is likely to obtain a multitasking combination therapeutic for 
translational medicine. This therapeutic agent would target cell-surface 
SR-BI making it possible for various (above-described) cell types, all 
potentially implicated in Alzheimer’s disease (refer [1,2] for reviews; 
cf. [71,72]), to be simultaneously sought out and better reached for 
localized drug treatment of brain tissue in vivo. It is also possible that 
targeting multiple cellular sites, within the multiple-cell-type network 
underlying Alzheimer’s disease pathophysiology, may be successful 
even when each (SR-BI bearing) cell type targeted is affected in a 
relatively modest way; that is to say, the effects on the various cell types 
targeted may be additive, multiplicative, or otherwise synergistic [26].

With regard to receptor-mediated membrane transport across 
the BBB, brain microvascular endothelial cells are believed to control 
iron uptake and efflux, under the direct guidance of neighboring 
astrocytes [75,76]. Detailed evidence has been reported recently [75] 
showing that human brain microvascular endothelial cells, which 
constitute most of the blood-brain barrier, receive brain-iron status 
information via paracrine signals from ensheathing astrocytes. Lastly, 
aging, obesity, and smoking are significant determinants of brain iron 
accumulation in human subjects [77] and all have been long-associated 
with Alzheimer’s disease incidence [25,50-52,54,55,65,78-80].

Note that the above-mentioned (cf. preceding paragraph and 
Abstract) long association of specifically both obesity and diabetes with 
Alzheimer’s disease incidence has also renewed attention to the brain’s 
main facilitative glucose transporter protein, GLUT-1, involvement in 
and probable contribution to neurodegenerative diseases [81-83]. More 
than two decades ago it was already recognized that normal human-
brain capillary endothelium has a high density of GLUT-1, whereas the 
cerebral microvessels in subjects with Alzheimer’s disease showed a 
markedly decreased GLUT-1 density when compared with age-matched 
controls [84,85]. More recently, Winkler et al. [86] demonstrated that 
GLUT-1 deficiency in cerebral endothelium (but not in astrocytes), in 
a mouse model of Alzheimer’s disease, initiates blood-brain barrier 
breakdown. These authors observed from their detailed experiments 
that reduced GLUT-1 expression (at the BBB) worsens Alzheimer’s 
disease cerebrovascular degeneration, neuropathology, and cognitive 
function – suggesting that (cerebral endothelial) GLUT-1 may 
represent a therapeutic target for Alzheimer’s disease vasculo-neuronal 
dysfunction and degeneration [86]. Further, other investigators [87] (cf. 
[88]) have recently provided evidence for brain glucose dysregulation as 
a critical event in Alzheimer’s disease pathogenesis that closely reflects 
both the severity of Alzheimer’s disease pathology and the expression 
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injection of lipid-encased microbubbles. These authors concluded that 
their findings suggest that microbubble-assisted ultrasound irradiation 
is useful for removing β-amyloid plaques in the mouse brain without 
causing observable damage, and should be explored further as a 
noninvasive method with potential as a (non-pharmacological) 
therapeutic approach for Alzheimer’s disease [1,2,135,136].

It is worth noting that the above-proposed mechanism of plaque-
burden reduction, by sonoporation (i.e., “loosening the tight junctions 
of the cells forming the BBB” [135,136]), might carry an additional 
effect. (Microbubble-assisted) sonoporation not only facilitates 
localized delivery of drugs and/or “activated” immune cells to target 
Alzheimer’s brain plaque in vivo [135], but also facilitates (passive-
transport?) reduction of β-amyloid plaque burden from brain tissue 
in a mouse model of Alzheimer’s disease [137]. Specifically, this same 
mechanism might also function to counteract characteristic decreased 
“brain clearance” of neurotoxic β-amyloid “monomer” [137]– which 
has been described as a central event in the pathogenesis of Alzheimer’s 
disease (cf. [1,2,138]). Namely, the recent biomolecular study by 
Keaney et al. reports that controlled modulation of tight junction 
components at the BBB can enhance the clearance (into the plasma) of 
soluble human β-amyloid monomers from the brain in a murine model 
of Alzheimer’s disease [137].

The actual cellular and biophysical mechanism(s) of the reversible 
BBB “opening” process from sonoporation, when employing focused 
transcranial ultrasound coupled with injected preformed microbubbles, 
has been described further in other published studies over the last 
several years [1,139-145]. For example, the preformed microbubbles 
concentrate the ultrasound effects to the microvasculature, greatly 
reducing the ultrasound exposure levels needed to produce 
bioeffects; thus, with injected microbubbles one can apply focused 
ultrasound transcranially without significant skull heating [139,140]. 
Moreover, other investigators have recently pointed out [144,145] 
that microbubble-mediated sonoporation is also believed to actually 
enhance local drug uptake across the cell membrane itself (e.g., of 
endothelial cells). Hence, CNS-endothelial sonoporation offers a range 
of neurotherapeutic options that can include either: (1) inducing/
facilitating endocytosis (and, in turn, transcytosis); (2) transient 
cellular-pore generation; and/or (3) widening of tight junctions 
between endothelial cells of the cerebral microvasculature. These 
varied neurotherapeutic options are important and useful, for both 
the researcher and the clinician, because the BBB disruption associated 
with various neurological disorders (e.g., Alzheimer’s disease, vascular 
dementia) has not been characterized in full detail cellularly [1]. In the 
foreseeable future, taking full advantage of this ongoing, noninvasive, 
and targeted use of preformed (such as LCM/ND nanoemulsion-based) 
microbubbles with sonoporation, while optimizing drug-delivery 
efficiency (through judicious choice of acoustic parameters [129,133]) 
and minimizing side effects, may assist in advancing sonoporation to 
the clinic (cf. [1,144-150]).

In this neurotherapeutic approach to the clinic, both the researcher 
and the clinician are still faced with the challenge of translation 
from rodent to large animal or man – yet significant progress on 
minimizing potential side effects, in large-animal transcranial-
ultrasound work, has already been reported in the literature (refer [1] 
for a review). For example, an earlier study by Xie et al. [140] in pigs 
has demonstrated that intravenous lipid-encapsulated microbubbles, 
combined with transtemporal-applied 1-MHz ultrasound, can 
transiently and reversibly increase BBB permeability in a large-
animal model. These authors explain that their study achieved an 
alteration in BBB permeability with lower peak negative pressures and 

lower doses of ultrasound contrast (i.e., intravenous, film-stabilized 
microbubbles) in a large-animal model and, thus, transient alterations 
in BBB permeability sufficient for enhanced drug delivery and without 
unwanted bioeffects (hemorrhage, necrosis, apoptosis) [140] in human 
subjects appear increasingly feasible (refer [1,2] for added discussion).

Conclusion
The proposed multitasking combination therapeutic may also 

display greater efficacy at different stages of Alzheimer’s disease (cf. 
[72]); as a result, this multitasking (drug-delivery) therapeutic could 
represent a promising way to treat, delay, or even prevent the disease in 
the future [1,2]. In addition, preformed (lipid-stabilized) microbubbles, 
as contained within this combination therapeutic [1,73], are known to 
substantially reduce the acoustic power levels needed for accomplishing 
temporary noninvasive (transcranial) ultrasound treatment [1,105-
109,111-113,130,151-156], or sonoporation [1,110,114-119,157-159], 
if additionally desired for the Alzheimer’s patient.
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