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Monoclonal antibodies (mAbs) have well established their 
valuable roles as therapeutic proteins. Second generation of mAbs 
as therapeutical products for immunotherapy of HIV infection has 
made significant progress in recent studies. A recent small phase 1 
clinical trial has demonstrated that monoclonal antibodies could be 
safe and effective in reducing HIV-1 viraemia in human. This study 
also suggested that passive transfer of mAbs will provide a potential 
alternative strategy for HIV-1 prevention, therapy, and cure. Single 
cell mAb cloning using either hydridoma technique or fluorescent 
activated cell sorting (FACS) is less efficient. Microsystem will enable a 
more efficient approach for single cell MAb cloning of bNAbs for HIV 
infection.

Production of monoclonal antibodies (mAbs)
Monoclonal antibodies (mAbs) are highly desirable as therapeutic 

proteins, and also widely defined as the most significant class of 
biologics for use as pharmaceuticals and diagnostics due to their 
specificity of binding, homogeneity, ability to be produced in unlimited 
quantities and predictable safety [1]. Since the first therapeutic mAb 
was commercialized in 1986, product approvals and sales of mAbs 
have grown significantly. Forty seven mAbs have been approved and 
marketed in the United States and Europe as of November 10, 2014 
[2-5]. Advancement of understanding of diseases at a molecular level 
drives the rapid antibody product development. Techniques including 
genomics, proteomics and systems biology continue to provide 
important new targets for modulating disease. MAbs often provide the 
most rapid route to a clinical proof of concept for activating, inhibiting, 
or blocking these new targets, and therefore are often the first product 
candidates advancing to clinical trials. Increasing and aging worldwide 
population and the increasing standard of living in emerging markets 
also fuel the growth in mAbs sales and global market expansion of 
the pharmaceutical market [6]. More than 200 mAbs are in clinical 
trial and over 300 mAb candidates are currently in development. In 
2015, the sales revenue of therapeutic antibodies is $80 billion and is 
predicated to reach $150 billion in 2020. 	

The classic method of mAb production is the hybridoma technique 
[7-10] (Figure 1). Antibody-secreting B lymphocytes (B cells) are 
isolated from animals immunized with an antigen. Isolated B cells are 
immortalized by chemically-induced fusing with a tumor cell line (a 
myeloma). The fused cells are called hybridomas and can be maintained 
in vitro. Standard techniques could generate 103-104 clones in each 
experiment. A substantial amount of work is needed to identify those 
cells that produce antibodies with a defined specificity. Traditional 
methods to screen for specific clones within these populations have 

relied on depositing cells into 96- or 384-well microtiter plates at 
densities of approximately one cell per well. After 7-14 days, the 
supernatants from these cultures are then assessed for the antibody 
secretions. Positive wells are selected for single cell cloning expansion. 
Limiting-dilution method for single-cell selection needs the hundreds 
to thousands of ELISA tests. Overall efficiency of this method is very 
low both practically and economically. All of the antibodies produced 
by descendants of one hybridoma cell are identical. Antibodies that are 
produced by hybridomas are known as monoclonal antibodies. 	

Advancement of technologies for speeding up the 
process

There have been several attempts to speed up the production of 
mAbs. ClonePixFL technology from Genetix Ltd plates out cells in 

Correspondence to: Qing Song, Department of Chemical and Biomolecular 
Engineering, New York University Tandon School of Engineering, 6 
Metrotechcenter, Brooklyn, NY 11201, USA, Tel: 646997-3863; E-mail: 
qs299@nyu.edu

Received: January 10, 2016; Accepted: February 12, 2016; Published: February 
16, 2016

 

Figure 1. Hybridoma technique. Isolated parimary B cells fused with myeloma to form 
hybridoma. Positive antibody secreting hybridoma will be screening extensively by limit 
dilution.
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semisolid medium, allow cells to grow 5-14 days into colonies. The 
secreted protein of interest is trapped in the vicinity of the colony and 
illuminated by a fluorescently-labeled antibody present in excess in the 
medium that diffuses freely through the medium until it recognizes 
and complexes with the secreted protein. The amount of fluorescence 
accumulating around a colony is proportional to the amount of target 
protein secreted by the colony. The positive clones can be selected and 
picked up based on quantitative protein secretion or specific protein 
production [11,12]. Integration of novel clone selection algorithms 
developed by Invitrogen and ClonePix technique allows for rapid 
screening through thousands of clones in a few hours. 

Fluorescent activated cell sorting (FACS) technique sorts 
single cells based on the expression patterns of specific cell surface 
markers [13,14]. This approach has been applied extensively to select 
antigen-specific B cells using antigen coated magnetic beads [15], 
fluorochrome-labeled antigens via multi-parameter FACS [16-19]. 
The major advantage of FACS technology in this application is that 
cells to be sorted can be clearly distinguished in terms of their stage of 
development and differentiation based upon the expression patterns 
of specific cell surface markers. In general, B cells at any stage can 
be sorted, but class-switched memory B cells and antibody-secreting 
cells (ASCs, i.e. plasmablasts and plasma cells) are of special interest 
to obtain relevant mAbs as they bear somatically mutated B cell 
antigen receptors (BCRs) with high affinities. Whereas for FACS, the 
correlation is not straightforward between cells that stain positive and 
those that actually secrete the antibodies. Both methods have improved 
the efficiency of screening by serial dilution. 

Antibody (Ab) immunotherapy of HIV infection
MAbs have been successfully used as immunotherapy products 

for cancer [20] and autoimmune disease [21,22]. Passive transfer of 
first generation broad neutralization antibodies (bNAbs) including 
b12, 2G12, 2F5 or 4E10 has been proved to protect against simian 
immunodeficiency viruses (SIVs) that express the HIV-1 envelope 
glycoproteins infection in macaques [23-29]. Clinical studies have 
discovered many human antibodies that can neutralize multiple 
strains of HIV [30-35]. Antibodies have been proved to be effective 
in suppressing HIV-1 infection in humanized mice [36], rhesus 
monkeys [37], and macaques [38]. A recent small phase 1 clinical 
trial [39] included 29 volunteers (17 HIV-infected and 12 uninfected) 
demonstrated that a single infusion of an experimental antibody 
3BNC17 significantly reduced HIV levels in infected people for as 
long as 28 days. For the first time, this study established that passive 
infusion of single bNAbs can have profound effects on HIV-1 viraemia 
in humans and can be used as immunotherapy products.

Significance of single cell monoclonal antibody (mab) 
cloning

Elicitation of potent broadly neutralizing antibodies (bnAbs) 
against HIV viruses is one of the key attributes of humoral immune 
response to HIV vaccines. Antibody responses to vaccination have been 
mainly measured as overall serum binding or functional titer such as 
neutralization to the HIV viruses. While serum antibody titers provide 
a general humoral response to potential HIV vaccines, polyclonal 
antibodies are of little value for defining the critical components of 
the host humoral response to HIV vaccines. Profiling monoclonal 
antibodies (mAbs) generated from vaccinated animal models or 
clinical samples will reveal crucial aspects of the immunological 
response to potential HIV vaccines. Generated mAbs can be further 

characterized for their binding affinity, neutralization, and cross-
reactivity. These details will provide valuable information for HIV 
vaccine designs. These mAbs can also be used as Ab immunotherapy 
for HIV infection. Hybridoma and EBV immortalized B cell lines have 
been used to generate human monoclonal antibodies. But their overall 
transformation efficiencies are extremely low (about 1-3%) [40-45]. 
Development of single cell mAb cloning techniques will be crucial for 
generating potential Ab immunotherapy for HIV infection. 

Single cell monoclonal antibody (mab) cloning using 
FACS

Single cell Ab cloning techniques were originally developed to 
study mechanisms that control tolerance in the B cell compartment 
[46]. Wardemann and coworkers have found that a portion of newly 
generated B cells in the human bone marrow expressed self- and 
polyreactive antibodies and their development was regulated at 
two independent self-tolerance checkpoints [46]. The techniques 
were modified to identify B cells which secrete broad neutralization 
Abs [47-50] or screen single B cells expressing Abs that bind to the 
HIV-1 envelope spike [51,52]. The single cell Ab cloning techniques 
successfully cloned many naturally arising, broad and potent HIV-
1-neutralizing antibodies (bNAbs) that were up to 2 to 3 orders of 
magnitude more potent than those previously discovered [47-67]. The 
single cell Ab cloning techniques have also been used to isolate mAbs 
from other animal models such as rhesus macaque [69,70]. 

As illustrated in Figure 2, single memory B cells were isolated using 
fluorescence activated cell sorting (FACS) based on surface expressed 
markers such as gp140 [52], or a modified gp120 core [53,54], gp41 
[68], gp160ΔcBaL [55] or a combination of a serial markers including 
CD3, CD27 and CD19 etc [54]. Some studies also used engineered 
protein probes to identify and sort epitope-specific B cells [66,67]. 
Immunoglobulin (Ig) genes of isolated single B cells were amplified 
using single cell reverse transcription and polymerize chain reaction 
(RT-PCR). Amplified heavy- and light-chain antibody regions were 
cloned into eukaryotic expression vectors and transfected into human 
embryonic kidney (HEK) 293 or 293 T cells to produce monoclonal 
human antibodies of the same specificity in vitro. Recombinant 
antibodies were purified from supernatants and tested for antigen 
reactivity at the end using ELISA.

Single cells sorted using FACS were based on surface markers which 
can distinguish their development stages and differentiation status. 
Ig-cloning step is time-consuming and prevents high-throughputs 
analysis of the B cell repertoires [68]. The single cell sorting using 
FACS is based on the surface markers not antigen specificity. Antigenic 
specificity was tested at the end of procedure. Single cell isolation was 

 

Figure 2. Single cell mAb cloning using FACS. Single cell sorted using FACS.IgG genes 
are amplified using single cell RT-PCR, transfected into 293 T cells with appropriate 
expression vector for recombinant mAbs.
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performed in a random way, therefore this approach is far less efficient 
than screening method based on antigen-specific secretions.

Microsystem enabled single cell monoclonal antibody 
(MAb) cloning for Ab immunotherapy of HIV infection

The time required per assay of antibody secretion using ELISA, as 
well as the small numbers of cells screened per 96 or 384-plate, limit 
the overall efficiency of the process, both practically and economically. 
Microsystem provides dense arrays of microwells with subnanoliter 
volumes to compartmentalize 104-106 cells for single cell assay [71,72]. 
Therefore, cell-based microarray [73] and microengraving techniques 
[74,75] can overcome above limitations to isolate, rapid screen and 
detect single cells secreting antibodies with the desired reactivity from 
a large numbers of individual cells. These techniques allow both the 
high throughput processing, retrieval and cloning of single cells with 
specificities of interest. 

A microarray enabled assay that are defined as immunospot array 
assay on a chip (ISAAC) enable rapid and efficient manipulation of live 
single cells to isolate antigen-specific Ab-secreting cells from human 
peripheral blood. As shown in Figure 3, the chip surface is coated with 
capture Abs, and the Abs secreted by the Ab-secreting cells are then 
trapped on the surface around the cells. The binding between capture 
Abs and targets is detected using fluorescently labeled secondary 
detection Abs. As a result, the formation of distinct fluorescent 
spots can be easily distinguished from nonspecific signals [73]. The 
mechanism of ISAAC is based on ELISPOT. 

Strategies that use microengraving technique [74-81] are based 
on the same principles as ELISA. Microengraving technique uses an 
engineered micro-tool that is fabricated by a soft lithographic method 
which modify the biocompatible polymer polydimethylsiloxane 
(PDMS). Microengraving technique uses the microfabricated array of 
subnanoliter wells to isolate individual cells spatially and print protein 
microarrays, where each spot on the array contains the proteins 
secreted by a single cell [74]. Unique IDs for each micro-well make 
it possible to position and track individual cells. The array is typically 
composed of 84,672 microwells, each with dimensions of 50μm length, 
width, and depth arranged over an area of 1’’× 3” on a polymeric stamp. 
Each well holds a volume of approximately 125pL. 

The microengraving technique was originally developed to 
generate microarrays comprising the secreted products of single 
cells. This method enabled a rapid and high-throughput system for 

screening of hybridoma cells producing antigen-specific Abs, and 
subsequent recovery and clonal expansion of single hybridoma cells 
of interest [75]. Microengraving technique was applied to collect 
multiparametric datasets that describe the specificity, isotype and 
apparent affinity of the Abs secreted from many individual primary B 
cells [76]. Microengraving technique was used to reveal isotype-specific 
autoreative B cells in Sjogren’s syndrome [77]. This technique was 
applied to detect and isolate auto-reactive human Abs from primary B 
cells and obtain comprehensive Ab immune profiles of B cells isolated 
from HIV patients [78]. 

Ig gene cloning is a time consuming process. Both high-throughput 
methods of ISSAC and microengraving provide compelling advantages 
for the early and rapid identification of cells secreting antigen-specific 
antibodies with high affinities and also enable the screening of multiple 
different clones with distinct specificities in parallel. The advantages 
provided with microsystem will allow us to single cell cloning HIV 
vaccine antigen-specific mAb for Ab therapy of HIV infection [79]. 
Isolated HIV vaccine antigen-specific B cells will also provide nature 
VH and VL pairs for subsequent deep sequencing [80-89]. These studies, 
illustrated in Figure 3 will allow us to functionally characterize HIV 
vaccine antigen-specific Abs, and to understand the evolution of broad 
neutralization Abs during the vaccination and maturation process. 
These methods can also be applied to characterize and sequence 
HIV vaccine antigen-specific B cells at different anatomical sites, 
such as blood, bone marrow, mucosal, etc. to reveal the insights of 
adaptive immune responses in response to HIV infection or vaccines. 
Meanwhile, the mutiplxed methods can also integrated into the single-
cell analytical system to reveal the cell-cell heterogeneities [90-93]. 
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