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Abstract
Active specific immunotherapy targeting carcinoembryonic antigen (CEA) may induce antigen-specific humoral and cellular responses in cancer patients. Plasmid 
DNA, encoding tumor antigens, represents a novel approach of delivering conformational antigens. Here we report immune data of an explorative study using 
CEA66-DNA (non-glycosylated cytoplasmic CEA) and tetwtCEA-DNA (wild type glycosylated and secreted CEA) for immunization in combination with 
cyclophosphamide and GM-CSF in the adjuvant setting of radically operated colorectal cancer (CRC). 10 patients received intradermal (id) or intramuscular (im) 
CEA66-DNA delivered by needle-free Biojector at weeks 0, 2, 6 (part 1). 10 patients received tetwtCEADNA id by needle injection and electroporation at weeks 
0 and 12 (part 2). In part 3, 6 patients were primed with CEA66-DNA and boosted with tetwtCEA-DNA. A significant increase of CD4+ effector memory, CD8+ 
effector and CD8+ effector memory T cells was seen in part 1. An immune response against CEA atleast one time point was noted in 15/20 (75%) patients in parts 1 
and 2 together. The frequency of patients mounting a CEA-specific cellular immune responses was significantly higher in part 1 (100%) than in part 2 (50%) (p=0.03). 
In part 3, 5/6 (83%) patients showed a CEA-specific immune response after a prime-boost protocol. The higher CEA-specific T cell responses seen in part 1, may 
indicate reduced immunological tolerance induced by the non-glycosylated intracellularly produced CEA66-DNA immunogen. Humoral responses determined by 
ELISA were low. Further studies are warranted to optimize vaccination schedules to induce both cellular and humoral anti-CEA responses of clinical significance.

Clinical trials.gov.identification number (parts 2/3) is NCT01064375.

Abbrevations
CEA: Carcinoembryonic Antigen; CRC: Colorectal Carcinoma; 

DFS: Disease free survival; ELISA: Enzyme-linked immunosorbent 
assay; ELISPOT: Enzyme-linked immunospot; EP: Electroporation; 
GM-CSF: Granulocyte-macrophage colony-stimulating factor; HRP: 
Horseradish peroxidase; id: intradermal; IFN-γ: interferon γ; IL-4: 
Interleukin-4; IL-10: Interleukin-10; im: Intramuscular; OS: Overall 
survival; PBMC: Peripheral blood mononuclear cells; PBS: Phosphate 
buffered saline; PHA: Phytohemagglutinin; PPD: Purified protein 
derivative of tuberculin; sc: Subcutaneous; SI: Stimulation index; SIIR: 
Sustained induced immune response; STIIR: Single time point induced 
immune response; TAA: Tumor associated antigens; TCV: Therapeutic 
cancer vaccines; TNF-α: Tumor necrosis factor-α

Introduction 
Colorectal carcinoma (CRC) is a major cause of cancer-related 

mortality. Despite introduction of new drugs, a large proportion of 
patients remain incurable. Adjuvant chemotherapy is standard for the 
treatment of stage III colon cancer and increases the 5-year survival 
rate to more than 70% and is routinely also used in stage II colon cancer 
patients with high-risk of relapse. Several chemotherapeutic agents 
approved for metastatic CRC have however failed to improve the 
prognosis for patients with stages II and III CRC [1]. New therapeutic 
approaches are needed and immunotherapy may offer a novel targeted 
therapeutic option [1].

The goal of therapeutic cancer vaccines (TCV) is to induce a 
robust long-lasting immune response with limited toxicity [2]. Most 
tumor cells express tumor-associated antigens (TAA), which might 
act as targets for the immune system [3]. A commonly expressed TAA 
in gastrointestinal cancer is the carcinoembryonic antigen (CEA) 
which has been explored in immunotherapy trials [4-11]. Vaccination 
targeting CEA in humans was shown to induce antigen-specific 
humoral, CD4+ helper as well as CD8+ cytotoxic T-cell (CTL) responses 
[8,11-14].

Immunisation with proteins comprising multiple CD4+ and CD8+ 
T cell epitopes, have failed to induce a robust CD8+ response which may 
partly be explained by defect peptide processing of exogenous proteins 
not entering the MHC class I antigen presentation pathway. DNA 
contains immunostimulatory CpG sequences that stimulate cytosolic 
DNA-sensing pathways, interferon regulatory factors and Fas-FasL 
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interactions [15-17]. A plasmid DNA vaccine acts by in vivo protein 
synthesis, which increases the possibility to activate innate and utilize 
MHC classes I and II antigen presenting pathways to induce humoral 
as well as CD4+ and CD8+ antigen specific T cell responses [5,18,19]. 
DNA vaccines thus offer opportunities to incorporate genes encoding 
molecules aimed to increase both innate and adaptive immunities to 
weak TAA [18,20,21].

Recently, DNA immunization was indicated to induce regression 
of early lesions of papilloma-induced cancer in situ (CIN) where it is 
likely that cell mediated immune reactivity plays a role. Early genes of 
human papilloma virus (HPV) 16 and 18 given by electroporation to 
individuals with CIN2/3 lesions appeared to influence differentiation 
and cause regression to CIN1 or normal pathology in 53-55% of 
patients compared to 12-19% in a placebo group [22].

Our tumor-related CEA-DNA vaccine constructs carrying 
immunomodulatory tet genes were further modified for expression 
at different cellular sites [23,24]. The CEA66-DNA vaccine construct 
encodes a modified, full-length, non-glycosylated form of CEA 
which is primarily retained in the cells [25,26]. In preclinical studies, 
predominantly T cells but also antibody responses against CEA 
glycoprotein were seen using a needle-free immunization device 
(Biojector) [25,27]. The tetwtCEA-DNA construct encodes wild type 
glycosylated CEA which is membrane bound and then secreted [25,26]. 
In preclinical studies, strong T cell as well as antibody responses were 
induced [25,27].

Technologies to deliver DNA impact the outcome of genetic 
vaccination. Delivery of DNA vaccines either by intramuscular (im) 
or intradermal (id) administration by electroporation (EP) increases 
DNA uptake and antigen expression compared to needle injections 
[28-30]. Electroporation delivers very short electrical pulses at the 
site of vaccination, pulses which create transient pores in adjacent cell 
membranes augmenting the transfection of plasmid DNA and causes 
a mild inflammation with recruitment of antigen-presenting cells 
without affecting persistence or integration of the plasmid [23,30,31].

In the present study, we evaluated the immunogenicity of two 
plasmid CEA-DNA constructs, CEA66-DNA and tetwtCEA-DNA, 

in CRC patients with no macroscopic disease. Immunization was 
combined with GM-CSF to further enhance antigen presentation and 
with cyclophosphamide to reduce immunosuppression [13,32,33].

Materials and methods
Study design

The study (ClinicalTrials.gov identifier, NCT01064375, parts 2/3) 
was a single-centre exploratory open label trial. The primary objective 
was to determine safety [34] of CEA-DNA vaccination. The secondary 
objectives were to compare CEA66-DNA id delivery with im delivery 
using Biojector and tetwtCEA id delivery with electroporation as well 
as to assess the efficacy of heterologous priming with CEA66-DNA 
followed by boosting with tetwtCEA-DNA. All patients provided a 
written informed consent prior to the study. The trial was approved 
by the Regional Ethical Review Board, Stockholm, Sweden and by the 
Medical Products Agency, Uppsala, Sweden. 

Study population and eligibility criteria

Details regarding eligibility criteria have been described elsewhere 
[34]. Briefly, patients were eligible if they had undergone a complete 
resection of a colonic or rectal cancer, histologically confirmed stage II 
or III without evidence of remaining macroscopic disease. Ten patients 
were enrolled in part 1 (cohorts I/II) and part 2 (cohorts III/IV), 
respectively (Table 1) [34]. Six patients from part 1 were enrolled in part 
3 (cohort V). Median time from primary surgery to enrollment was 16 
months (range 14-67 months). Median follow-up time for all patients 
was 23 months (range 12-38 months). Basic clinical characteristics are 
shown in Table 1. All patients, except two, were evaluable for immune 
responses according to the protocol.

Production of DNA vaccines

Two different CEA (CEACAM5)-expressing DNA plasmids 
were modified, one expressing CEA in the cytoplasm (CEA66-DNA, 
batch no. 060118-24:1/31) to improve antigen presentation for class 
I peptides and induction of cellular immunity, the other to improve 
the antibody production by secretion of the CEA antigen (tetwtCEA-
DNA, batch no. 090819-24:2/51) [35,36]. Both constructs were fused 

Part 1 Part 2 Part 3*
I II III IV V

Study cohort (n=5) (n=5) (n=5) (n=5) (n=6)
Age, years (mean±SD) 64.8 ± 6.6 62.8 ± 8.5 58 ± 9.2 66 ± 8.3 67 ± 5.6
Gender, n (%)
 Male 3 (60) 3 (60) 2 (40) 5 (100) 4 (67)
 Female 2 (40) 2 (40) 3 (60) 0 (0) 2 (33)
Tumor site, n (%)
 Colon 4 (80) 4 (80) 2 (40) 4 (80) 6 (100)
 Rectum 1 (20) 1 (20) 3 (60) 1 (20) 0 (0)
AJCC**, n (%)
 II 3 (60) 2 (40) 4 (80) 3 (60) 3 (50)
 III 2 (40) 3 (60) 1 (20) 2 (40) 3 (50)
Previous therapy except surgery, n (%)
 Preoperative RT*** 0 0 1 (20) 1 (20) 0
 Preoperative radiochemotherapy 1 (20) 0 0 0 0
 Adjuvant chemotherapy 3 (60) 4 (80) 2 (40) 3 (60) 5 (83)
 Preoperative RT and Adjuvant chemotherapy 0 1 (20) 2 (40) 0 0
 None 1 (20) 0 0 1 (20) 1 (17)

Table 1. Characteristics of the patients.

* Part 3 includes 6 patients from part 1.
** AJCC: staging by American Joint Committee on Cancer (5th Edition)
*** RT: Radiotherapy
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to nucleotides representing amino acids 830-844 of tetanus toxoid 
(QYIKANSKFIGITEL), a strong promiscuous helper T cell epitope, 
to improve immunogenicity of endogenous CEA, which is a weak 
immunogen [21,24]. The CEA66-DNA plasmid construct has the N- 
and C-terminal signal sequences of the CEA gene deleted, no post-
translational glycosylation of the CEA66 protein product and is mainly 
located in the cytoplasm [22-24]. The tetwtCEA protein product has 
characteristics of the wild-type CEA protein, such as beeing heavily 
glycosylated and localizing to the expressing cell membrane [22-24]. 
All DNA vaccines had a concentration of 2 mg DNA/ml. The plasmids 
were manufactured according to GMP standards by Vecura at the 
Clinical Research Center, Karolinska University Hospital at Huddinge, 
Sweden.

Vaccination schedules

An overview of the different immunization treatments and the 
number of patients included in the different cohorts is shown in Figure 
1 and Table 1, respectively. 

The vaccination schedule of CEA66-DNA delivered id or im 
by Biojector has been described previously [34]. In part 2, the 
patients received 400 ug of tetwtCEA-DNA id by needle followed 
by electroporation. Without or with, recombinant human GM-CSF 
(sargramostim, Leukine®, Bayer Health Care Pharmaceuticals, Seattle, 
USA). The lower DNA dose was motivated by data that electroporation 
will deposit plasmids more effectively intracellularly than needle only 
[23].In part 3, six patients originated from individuals of part 1. In 
addition to their priming by CEA66-DNA, they were boosted by 400 

Figure 1. A) Schematic presentation of vaccination schedules. Part 1 (cohorts I and II): Patients received one infusion of cyclophosphamide i.v. prior to start of immunization, i.e. day –3. 
GM-CSF was given for 4 consecutive days starting day -1. The vaccine (CEA66-DNA) was given intradermally or intramuscularly by Biojector, weeks 0, 2 and 6. B) Parts 2 and 3: All 
patients received one infusion of cyclophosphamide i.v. prior to each immunisation procedure. Patients in part 2 (cohorts III and IV) and part 3 (cohort V) received two intradermal injections 
of tetwt CEA-DNA (weeks 0 and 12) followed by electroporation. GM-CSF was given for 4 consecutive days starting the day before the vaccine was delivered to cohort IV.
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ug of tetwtCEA-DNA twice, similar to part 2. Due to safety concerns, 
GM-CSF was omitted from the vaccination schedule in cohort [34].

Delivery of CEA-DNA

The delivery procedure of CEA66-DNA by the Biojector device 
(Bioject Medical Technology Inc., Tualatin, OR, USA) has previously 
been described [34]. After id injection of tetwtCEA-DNA, EP was 
applied using the DERMA VAXTM electroporation system (CCEP-
40A Waveform Generator, Cyto Pulse Sciences, Inc., Glen Burnie,MD, 
USA; later Cellectis, Paris, France) according to manufacturer´s 
recommendation [37].

Clinical examination and Follow-up

Before immunization, a complete case history, physical 
examination and laboratory tests were performed. Patients had 
planned visits at weeks 0, 2, 6, 8, 18, 30 and 72 in part 1 and at weeks 0, 
2, 11, 12, 14, 24, 36, 52 and 72 in parts 2 and 3. Injection site inspection, 
physical examination, review of the memory aid and adverse event 
assessments were done. Standard urine and blood chemistry analysis as 
well as thyroid function and serum CEA were measured at baseline and 
throughout the study period. Chest X-ray or computer tomography 
(CT) as well as CT scan of the abdomen were performed at baseline and 
during follow-up at the discretion of the physician. The study period 
was 72 weeks during which the patients were monitored for safety and 
immune responses (immune responses in parts 2/3 only for 36 weeks). 
The patients were followed clinically for a total period of 5 years. 
Disease free survival (DFS) and overall survival (OS) were recorded. 
DFS survival was defined as time from start of immunization to local 
recurrence, metastasis or death during last follow-up. OS was defined 
as time from start of immunization to death or last follow-up [38].

Immune function testing

Immune responses against a recombinant baculovirus produced 
CEA protein (rCEA) (Protein Science Corp, (cat.no.3000)) were 
analysed. Furthermore, as the CEA molecule is characterized by 
several domains [N-A1-B1-A2-B2-A3-B3-M], a pool of CEA peptides 
consisting of 15-mer peptides with 11 aa overlap covering the A3 
region, a pool of 15-mers peptide with 10 aa overlap covering the 
B3 region and the CAP-1 peptide (aa 571 YLSGANLNL) were also 
used to stimulate T cells [36,38-41]. The CAP-1 peptide which is 
immunodominant for CEA-reactive CD8+ CTL induces CAP1-specific 
T cells after immunization of patients with the peptide and various 
immunostimulating agents during chemotherapy [39]. All peptides 
were produced by Thermo Hybaid GmbH, Ulm, Germany to a purity 
of more than 90%.

Isolation of blood mononuclear cells

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-
Paque plus (GE healthcare life Science) (cat.no. 17-1440-03)) gradient 
centrifugation and resuspended in complete medium (RPMI-1640 
[Gibco-BRL, cat.no.11-875-093] supplemented with L-glutamine (2 
mM) (Gibco-BRL, cat.no.25030149), penicillin (100 IE), streptomycin 
(100 µg/ml)( Gibco-BRL, cat.no.15140-122) and 10% heat-inactivated 
human AB serum as previously described [42].

Proliferation assay

PBMC, 1x105 cells/well, were cultured with rCEA (1 and 10 µg/ml), 
purified protein derivative of tuberculin (PPD) (2.5 µg/ml) (National 
Serum Institute, cat.no.2390) and phytohemagglutinin (PHA) (10 µg/
ml) (Sigma-Aldrich cat.no.L8902) in 96-well culture plates for 6 days. 

During the last 18 hours of incubation, 1 µCi/well of [3H] thymidine 
(Perkin Elmer, cat.no.NET2700) was added. Cells were harvested and 
incorporated radioactivity measured by a beta-counter (Micro Beta 
Trilux, Wallac, Finland). Results are shown as stimulation index (SI) 
calculated by dividing mean radioactivity (cpm) of 6 replicates of 
experimental wells by that of the background value (cells with medium 
alone). CEA responses were also analyzed in eight healthy donors: SI 
value 1,1 ± 0,29 (mean ± SD). PPD and PHA responses were 31.7± 
27.9 and 15.4 ± 12.5 resp. Changes in PPD and PHA activity over time 
in patients are presented as ratios between post and prevaccination 
values. A change in the ratio of ≥ 2 on at least two occasions, compared 
to baseline, was considered significant.

ELISPOT assay

PBMC were cultured in 48-well plates with rCEA (1 and 10 µg/ml), 
the pool of CEA peptides, (5 µg/ml), PHA (5 µg/ml) or PPD (2.5 µg/ml) 
for 5 days. A millipore 96-well filter plate was coated with anti-IFN-γ 
antibody (10 µg/ml) (Mabtech, cat.no.3420-3-250). Cultured PBMC 
were transferred to the coated plate and incubated for 20 h with the 
antigens as above. Cells were washed and incubated with a secondary 
biotinylated anti-IFN-γ antibody (1 µg/ml) (Mabtech, cat.no.3420-6-
250) for 2 h at room temperature. After washing, a streptavidin-ALP 
conjugate (1:1000) (Mabtech, cat.no.3310-9) was added to the cells 
and incubated for 1 h at room temperature. Cells secreting IFN-γ were 
developed by adding substrate BCIP/NBT plus (Mabtech, cat.no.3650-
10) and incubated at room temperature. The reaction was stopped at 
the appearance of dark spots. Spots were counted by an automatic 
ELISPOT reader (AID, Strassberg, Germany) and results are presented 
as SFU (spot forming units/106 cells). CEA responses were also analyzed 
in eight healthy donors: SFU 1 ± 1.4 (mean ± SD).

Cytokine secretion assay

Supernatants from the proliferation assays were collected (20 µl/
well) at days 1 and 5 of culture and stored at -70°C until analyzed. IL-4, 
IL-10, IFN-γ, TNF-α and GM-CSF were analyzed using the Bio-Plex 
200 System (Bio-Rad Laboratories, cat.no.171-000201) according to 
manufacturer’s instruction (http://www.bio-rad.com/webroot/web/
pdf/lsr/literature/4110004F.pdf).

ELISA

ELISA plates were coated with 0.1 μg per well of rCEA (Protein 
Sciences, Meriden, CT) or purified hCEA (a gift from Prof. S. 
Hammarström, Umeå University, Umeå) diluted in 0.05 M Na2CO3 
(pH 9, 6) and incubated at room temperature overnight followed by 24 
h in 4°C. After washing in ELISA buffer (0.05% Tween20, 0.15 M NaCl 
in distilled water), the plates were blocked with 5% milk in PBS for 2 h. 
Serum from immunized patients were diluted in PBS with 2.5% milk 
(1:4 - 1:10000) and added to the plates. Following incubation overnight 
at room temperature, excess serum was removed and the plates were 
washed with ELISA buffer. To detect CEA-specific IgG antibodies, a 
rabbit anti-human HRP (Daco, cat.no.P0214) conjugate (1:3000 in 
1.25% milk) was added to the plates and incubated at 37°C for 2 h. Plates 
were washed with ELISA buffer and developed by adding O-phenylene 
diamine substrate (Sigma-Aldrich cat.no. P9029) activated by H2O2. 
The reaction was stopped by adding 2.5 M H2SO4. Optical density (OD) 
was read at 490 and 650 nm. A net absorbance of 0.5 was used as a 
cutoff. A monkey anti-CEA serum served as a positive control.

Monoclonal antibodies

The following monoclonal antibodies were used in flow-cytometry: 
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CD3 (BD, cat.no.557597), CD4 (BD, cat.no. 550631) , CD8 (BD, cat.
no. 347314), CD25, (BD, cat.no. 555432) CD56 (BD, cat.no.340410), 
CD45RA (BD, cat.no. 347723), CCR7 (R&D Systems, cat.no.FAB197P) 
CD19 (BD, cat.no. 347544) HLA-DR (BD, cat.no. 347367) CD11b (BD 
Pharmingen, cat.no.562793), CD33 (BD Pharmingen, cat.no.561817), 
CD14 (BD, cat.no.557923), CD45, (eBioscience, cat.no.9048-9459) and 
a Treg staining kit (Foxp3/CD4/CD25) (eBioscience, cat.no.88-8995-40).

Flow cytometry

The procedure has been described in detail previously [43,44]. 
Briefly, conjugated antibodies were added to cells (5x105 cells/tube) 
and incubated for 30 min. Intracellular staining was performed using 
the Treg staining kit. After a final wash, cells were resuspended in PBS 
and events acquired using LSRll (BD Biosciences, San Jose, CA, USA) 
and analyzed by the FlowJo software (Treestar Inc., Ashland, Oregon, 
USA).

Immune monitoring

Blood was drawn for immune tests at baseline and at weeks 8, 18, 
30, 72 in part 1 and in parts 2 and 3 at baseline and at weeks 2, 14, 24, 36.

Definition of vaccine-induced immune responses

A vaccine-induced proliferative response was fulfilled if there 
was at least a two-fold increase in SI compared to baseline [45]. A 
vaccine-induced IFN-γ response in ELISPOT was defined as at least 
a two-fold increase in the delta value (experimental value minus 
background) compared to baseline [46]. In the cytokine secretion 
assay, the highest value from 24 h or 120 h cultures respectively was 
used. Concentration of a cytokine in experimental wells was divided 
with that of the background value (cells with medium alone). An 
antigen-specific cytokine/chemokine secretion response was defined as 
a two-fold increase in the concentration of a specific cytokine in a post-
vaccination sample compared to pre-vaccination sample. A vaccine-

induced anti-CEA IgG antibody response (ELISA) was defined as an 
increase in the titer of at least two-fold, compared to baseline.

Single time point induced immune response (STIIR)

A patient was considered to have a STIIR if a response against 
rCEA and/or CEA derived peptides in one of the assays (proliferation, 
ELISPOT, cytokine secretion) was noted at only one time point.

Sustained induced immune response (SIIR)

A patient was considered to have a SIIR if a response in at least 
in one of the assays (proliferation, ELISPOT, cytokine secretion) was 
noted at least two different time.

Statistical methods

Statistical analyses were performed using the IBM SPSS (version 
19) and STATVIEW (version 5) statistics. The non-parametric 
Friedman’s test for multiple comparisons was used to calculate relation 
of cell subsets at different time points. The Chi-square, Fisher test and 
one-way ANOVA tests were used to analyze differences in prognostic 
factors between groups and the relation to immune responses. One 
way ANOVA and Friedman’s test were used to assess PPD and PHA 
responses at baseline comparing patients and healthy donors as well 
as patients over time. A p-value of <0.05 was considered statistically 
significant.

Results
Lymphocyte subsets and activation

No major significant differences in lymphocyte subsets at baseline 
were noted comparing patients in parts 1 and 2. However, in comparison 
to healthy controls, CD4+ and CD8+ memory cells were significantly lower 
in patients, (p < 0.01 and p < 0.05 respectively) and CD4+ effector memory 
cells significantly higher (p < 0.05, not shown in figures). 

Figure 2. Total numbers ofT cell subsets (x 109/l) from start of immunization (week 0) and during follow-up (week 8-30) in part 1 (cohorts I and II). A) CD4+ effector-memory cells; B) 
CD8+ memory cells; C) CD8+ effector-memory cells. The box represents the 25th to 75th percentiles. The line in the middle represents the median. The top whisker is drawn from the value 
associated with the 75th to 90th percentiles, and bottom from 25th to 10th percentile. P-values are indicated at the top.
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In part 1, a significant increase was seen in CD4+ effector memory 
cells at week 18 (p=0.03); in CD8+ effector cells at week 8 (p=0.01) 
and in CD8+ effector memory cells at week 30 (p=0.01) (Figure 2). No 
significant changes in those subsets were noted in patients of parts 2 
and 3 and neither in Treg cells (CD4+CD25highFOXP3+), myeloderived 
suppressor cells (MDSC) (CD11b+ CD33+HLA-DR-CD14-), NK or 
NKT cells over time (data not shown).

At baseline, patients had a significantly lower proliferative 
response to PHA than controls (p<0.001) but PPD response did not 
differ significantly. PHA responses over time are shown in Figure 3. A 
more than two-fold increase compared to baseline at at least two time-
points was noted in 10/26 (38%) patients. PPD responses increased 
in 12/26 (46%) of the patients (data not shown). These increases were 
distributed among vaccinees, and thus serve to indicate recovery of 
immunoactivation.

CEA-related immune responses

Proliferation assays: In part 1 of the study, 4/10 (40%) patients 
mounted a CEA specific proliferative response at at least one time point. 
Responses were detected between weeks 18 and 30. A proliferative 
response at two time points was seen in 2 patients (20 %) (Table 2). 
In part 2, a vaccine-induced proliferative response was seen once in 
3/10 (30%) patients. Responses were detected between weeks 24 and 
36. A response at two different time points was not seen. In part 3, 
3/6 (50%) patients mounted a vaccine-induced proliferative response 
between weeks 2 and 24. A response at two time points was seen in one 
patient (17%).

ELISPOT (IFN-γ): A response against rCEA at at least one time 
point was detected in 7/10 (70%) patients in part 1. Responses were 
noted between weeks 8 and 72. A response at two different time points 
was noted in two of them (20%) (Table 2). In part 2, a cellular response 
to CEA at one time point was detected in 2/10 (20%) patients between 

Proliferation (SI) * ELISPOT ** Cytokine secretion assay*** Overall induced 
immune 
response****

 
Patients

W8 
rCEA

W18 
rCEA

W30 
rCEA

W72 
rCEA

W8
rCEA/P

W18
rCEA/P

W30
rCEA/P

W72 
rCEA/P

W8
rCEA

W18
rCEA

W30
rCEA

W72
rCEA

STIIR SIIR

Pa
rt

 1

 I-01 - - - - CEA/A3, 
CTL

CEA/B3 -/A3+ - IFN-γ, TNF-α IFN-γ - n.d. R R

 I-02 - - - - - - - CEA/- - - - n.d. R NR
 I-03 - - - - - -/A3 - - TNF-α - - n.d. R R
 I-04 - 2.48 2.71 - CEA/A3 - - - - - - n.d. R R
 I-05 - 4.38 2.45 - CEA/A3 CEA/B3, 

CTL
- - IFN-γ, IL-10 IFN-γ, 

TNF-α
- n.d. R R

 II-06 - - - - - - - - - TNF-α n.d. R R
 II-07 - 2.19 ND ND - - ND ND - - - n.d. R NR
 II-08 - - - - - - - -/CTL IFN-γ - - n.d. R R
 II-09 - - - - - CEA/- - - - - - n.d. R NR
 II-10 - - 4.75 - - - - - - - - n.d. R NR

Pa
rt

 2

 III-11 - - - - - - - - - - - - NR NR
 III-12 - - - - - - - - - - - - NR NR
 III-13 - - - - - - - - - - - - NR NR
 III-14 - - 2,0 - - - CEA - TNF-α - - - R R
 III-15 - - - - - - - - TNF-α TNF-α TNF-α TNF-α R R
 IV-16 - - - ND - - - ND - - - - NR NR
 IV-17 - - 2,7 - - - - - - - - - R NR
 IV-18 - - - - - - - - - IFN-γ, 

TNF-α
- - R NR

 IV-19 - - - 3,3 CEA/B3 - CEA/A3 - - - - TNF-α R R
 IV-20 - - - - - - - - - - - - NR NR

Pa
rt

 3

 V-21 2,56 2,43 - - - - CEA CEA - - - - R R
 V-22 - - - - - - - - - - - - NR NR
 V-23 2,7 - - - - - - - - - - - R NR
 V-24 - - - - - - - - - - IFN-γ, 

TNF-α
TNF-α R R

 V-25 - - - - - CEA CEA/
A3,B3,CTL

- - - IFN-γ R R

 V-26 - 2,3 - - - - - - - - IFN-γ, 
TNF-α

IFN-γ, 
TNF-α

R R

*Proliferative response against recombinant CEA (rCEA) 
 **ELISPOT response against rCEA and CEA derived peptides (P) (A3, B3 or CTL peptide)
 ***Induced cytokine secretion response against rCEA. Detected cytokines are indicated.IL-4, IL-7, IL-17 and IFN-α secretion were not detected.
 ****R; Responder. NR; Non-responder
 STIIR: Single time point induced immune response
 SIIR: Sustained induced immune response
 ND: Not done

Table 2. Summary of individual CEA-specific immune responses in individual patients immunized with CEA66-DNA (Part 1 (cohorts I, II)), tetwtCEA-DNA, (Part 2 (cohorts III, IV)) and 
CEA66-DNA/tewtCEA-DNA part 3 (cohort V).
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weeks 2 and 24. One of them had a response at two time points. In 
part 3, 2/6 (33%) patients mounted an IFN-γ response, noted between 
weeks 14 and 36. Both had a response at least two time points.

Cytokine secretion: In Table 2 the individual cytokine responses 
against rCEA are summarized. A Th1-like cytokine secretion 
pattern (IFN- γ, TNF-α and/or GM-CSF) was noted between weeks 
8 and 36. A Th2-like cytokine response (IL-4, IL-10) was rare. The 
cumulative absolute values of the different cytokines (pg/ml) (IFN-γ, 
TNF-α, GMCSF, IL-4, IL-10) for all individual patients are shown in 
Supplementary Figure.

Epitope mapping: CEA-derived peptides were used to map epitope 
responses by ELISPOT. A response against the A3 peptides was seen in 
6/26 (23%) patients, against B3 in 4/26 (15%) and in 4/26 (15%) against 
the CTL epitope. In 4 patients, a response against rCEA but not against 
the peptides was noted. One patient (II-14) had a CTL peptide response 
but no response against rCEA (Table 2).

Anti-CEA antibody response (ELISA): An anti-CEA IgG antibody 
response was noted in two patients only. Peak titer increase was 20-fold 
at week 18 in patient II-08 and 2.5-fold at week 14 in patient IV-18 
(data not shown).

Single time point induced immune response (STIIR) (Parts 1 
and 2): In total, 15 out of 20 patients (75%) mounted a STIIR in any 
of the antigen-specific assays: 10/10 (100%) in part 1 and 5/10 (50%) 
patients in part 2. The difference is statistically significant (p = 0.03) 
(Table 2).

Sustained induced immune response (SIIR) (Parts 1 and 2): 
An SIIR was seen in 6/10 (60%) patients in part 1 and in 3/10 (30%) 
patients in part 2. The difference was not statistically significant (Table 
2). The duration of CEA specific immune responses in patients with 
SIIR lasted for several months (Figure 4).

Priming with CEA66-DNA and boosting with tetwtCEA-DNA 
(Part 3): Six patients from part I who developed an immune response 
during priming with CEA66-DNA were boosted with tetwtCEA-DNA. 
5/6 (83%) mounted a STIIR during boosting and 4/6 (67%) developed 
a SIIR following these procedures (Table 2).

Clinical tumor status 

Clinical outcome and relation to immune response: There was no 
significant difference comparing patients in parts 1, 2 and 3 with regard 
to age, sex, stage or differentiation of the primary tumor. Patient II-07 
relapsed at month 12 and was still receiving chemotherapy at follow-
up at 25 months. Pat no II-10 had a solitary liver metastasis at month 
12. A resection was performed and no signs of relapse were noted at 
follow-up. In the remaining patients, no evidence of disease recurrence 
has been noted. Median DFS of all patients in part 1 was 33 months 
(range 12-50+), and median OS 33 months (range 23-50+). In part 2, 
no patients have relapsed. Median OS in part 2 was 25 months (range 
12-38+ months). There was no significant difference in OS or DFS 
comparing patients with STIIR or SIIR (data not shown).

Secondary malignancies: During follow-up, one patient (I-03) 
died at month 23 due to urinary bladder cancer, diagnosed 18 months 
after start of immunization treatment. Patient II-06 was diagnosed with 
a superficial urinary bladder cancer at 28 months and was successfully 
treated with local surgery. Patient IV-16 was diagnosed with a prostatic 
carcinoma six months after start of treatment and underwent curative 
treatment.

Figure 3. Individualrelative changes in proliferative responses (SI) to PHA from start of immunization (week 0) and during follow-up (weeks 2-36).

Figure 4. Duration of vaccine induced cellular responses in individual patients with a 
sustained induced immune response (SIIR) during follow-up (weeks 2-72). (Part 1 () 
and Part 2 ()).



Staff C (2017) DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients

Glob Vaccines Immunol, 2017         doi: 10.15761/GVI.1000125  Volume 2(2): 8-13

 

1

10

100

1000

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

I-01

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

I-02

Medium Medium+CEA

1

100

10000

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

I-03

Medium Medium+CEA

1

10

100

1000

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

I-04

Medium Medium+CEA

1
10

100
1000

10000

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

I-05

Medium Medium+CEA

0

100

200

300

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

II-06

Medium Medium+CEA

0

10

20

30

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

II-07

Medium Medium+CEA

0

10

20

30

40

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

II-08

Medium Medium+CEA

 

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

II-09

Medium Medium+CEA

1

10

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

II-10

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

III-11

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

III-12

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

III-13

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

III-14

Medium Medium+CEA

0
10
20
30
40
50

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

III-15

Medium Medium+CEA

0

5

10

15

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

IV-16

Medium Medium+CEA



Staff C (2017) DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients

Glob Vaccines Immunol, 2017         doi: 10.15761/GVI.1000125  Volume 2(2): 9-13

 

1

10

100

1000

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

IV-17

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

IV-18

Medium Medium+CEA

0

50

100

150

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

IV-19

Medium Medium+CEA

0

5

10

15

20

IFNg TNFa GMCSF IL4 IL10
pg

/m
l

IV-20

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

V-21

Medium Medium+CEA

0

5

10

15

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

V-22

Medium Medium+CEA

0

50

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

V-23

Medium Medium+CEA

1

10

100

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

V-24

Medium Medium+CEA

 

1

10

100

1000

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

V-25

Medium Medium+CEA

0

50

100

150

IFNg TNFa GMCSF IL4 IL10

pg
/m

l

V-26

Medium Medium+CEA

Supplementary Figure.Secretion of Th1 (IFN-γ, TNF-α, GM-CSF) /Th2 (IL-10), cytokines in postvaccination T-cell cultures of individual patients. PMBC were cultured with or without 
CEA. The highest value from 24 h and 120 h cultures respectively was used. Columns represent cumulative mean concentration (pg/ml)1 from 5-6 different sampling times.
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Discussion
This is a report on immunogenicity of plasmid CEA-DNA 

immunization in humans, comprising two different CEA plasmids 
and two methods of DNA delivery (needle-free jet stream delivery 
or electroporation). In total, 75% of patients radically operated for 
CRC, who had not received previous CEA immunotherapy, mounted 
detectable CEA-specific immune responses. The responses were 
however generally weak and revealed cell mediated immunity rather 
than humoral reactivity. In four of six patients primed with CEA66-
DNA and boosted with tetwtCEA-DNA, cell mediated responses 
lasted for several months. This may indicate that CEA66-DNA which 
is primarily expressed intracellular is more effective in priming a cell 
mediated immunity than the product of tetwtCEA-DNA which is 
membrane-bound and secreted. Neither priming with CEA66-DNA 
nor priming or boosting with tetwtCEA-DNA augmented antibody 
responses, contradicting preclinical results where antibodies appeared 
in a non-tolerant host and clinical results with a CEA glycoprotein 
produced in the baculovirus system [8,23,25].

The CEA molecule in humans, an onco-fetal antigen, occurs in 
abundance on tumor cells derived from gastro-intestinal tract tumors, 
but also other cancers such as breast and teratocarcinomas may express 
CEA [47-49]. In human tumors, CEA is a cell adhesion molecule that 
belongs to the immunoglobulin superfamily and mediates intercellular 
contact primarily by the N-terminal IgV-like domain. CEA is therefore 
thought to contribute to tumor invasion and metastasis [36,50]. Due to 
its overexpression in tumors, CEA has been targeted both for imaging 
of primary and metastatic tumors [51-53] and as a therapeutic vaccine 
in colorectal carcinoma [6,8-11, 14].

Our motif for immunizing with both glycosylated and non-
glycosylated CEA was that CEA expressed by cancer cells may be non-
glycosylated compared to CEA in normal colon cells, rendering the 
tumor-associated CEA more immunogenic [36]. The tumor associated 
antigen MUC-1 is frequently hypoglycosylated in myeloma cells and 
hypoglycosylated MUC-1 was more efficiently processed by dendritic 
cells inducing a strong T cell response [54-56]. Slightly heterogenous 
antigens seem to improve cross-reactivity to endogenous antigens 
[57,58].

In addition to a cellular immune response against rCEA, immune 
responses against CEA-derived peptides (A3, B3 and a CTL epitope) 
were also induced. The cellular immune responses against CEA-derived 
peptides suggest that CEA66-DNA vaccination induced both CD4+ 
and CD8+ responses, in agreement with studies in mice immunized 
with CEA66-DNA, where CD4+ cells recognizing the B3 domain and 
CD8+ cells against CTL-epitopes were evoked [23,27].

The route and method of DNA delivery strongly influence the 
induction of immune responses. We applied the needle-free jet 
injection device or electroporation to deliver DNA intracellularly for 
expression of the encoded proteins. In the present study, the frequency 
of patients mounting a single time point cellular immune response 
was significantly higher using the needle-free Biojector delivery (part 
1) compared to electroporation (part 2). A higher dose of DNA in 
the Biojector group might also contribute to an augmented immune 
response explaining the higher frequency of immune responders 
in part 1 compared to part 2. A better immune response in the 
Biojector group may also be substantiated by the significant increase 
of effector/memory T cells [59]. The Biojector delivery system may 
also evoke stronger cellular danger signals enhancing the induction 
of immune responses [19,21]. Immune suppression is a common 

feature in the tumor microenvironment and a barrier for cancer 
immunotherapy. Both myeloid and lymphoid regulatory cells in the 
tumor microenvironment, as well as immunosuppressive factors 
released by tumor cells might hamper immune responses [60,61]. 
Therapeutic cancer vaccine strategies have to by-pass immune 
suppression. Monitoring T cell responses may indicate whether T 
cell exhaustion contributes to poor results of immunotherapy [62]. 
Cyclophosphamide suppresses functions of regulatory T cells but this 
type of immunomodulation is early and transient [57,60,63-65]. Nadir 
levels of regulatory cells are seen within a week but with a rebound 
after two weeks [66]. No significant change in Tregs was registered in the 
present study, which might be due to the fact that Treg cells were not 
monitored sufficiently close to the cyclophosphamide administration. 

In the present study, a significantly lower proliferative response 
to PHA in patients compared to normal controls was noted at start 
of vaccination. PHA-reactivity increased in about 40% of the patients 
during vaccination, a phenomenon which may be related to a reduced 
suppression induced by the cyclophosphamide treatment, or in the 
case of part 1, by danger signal activation by the needle-free injections. 
Our data on memory and effector T cell populations may also indicate 
that individuals in part 1/cohort I have developed an increased general 
reactivity during immunization contributing to a better antigen-
specific cellular response.

Data on the safety of DNA vaccines are accumulating. Neither 
in animals, nor in several long-term clinical trials have serious side-
effects related to genetic vaccines been noted [67,68]. The safety data 
of the novel construct CEA66-DNA was previously reported [34]. 
Vaccination with this construct was well tolerated and no signs of 
autoimmunity detected.

Lack of detectable integration of plasmid DNA into the host 
genome has been demonstrated preclinically, following DNA plasmids 
delivery by needle, needle-free devices or electroporation [67,69]. In 
the present study, two patients were diagnosed with bladder cancer 
during follow-up but both patients had known risk factors. Similar to 
previous clinical DNA vaccine trials [14,22,70-72] including CEA66-
DNA immunization with CEA-DNA appears to have no general safety 
concerns [34].

The results of our study indicate that self-tolerance against 
CEA could be reduced with a DNA-based vaccine, but that DNA 
immunization was less potent in humans than protein and/or vector-
based CEA [8-10]. A previous study demonstrated higher anti-CEA 
peptide responses in tumor-free CRC patients than in patients with 
a tumor burden, confirming that T-cell downregulating factors play 
a role for induction of antigen-specific cellular responses [14]. Our 
prime-boost concept using two different CEA-DNA vaccine constructs 
as in the present study did not seem to be more effective than either 
alone. However, a prime-boost strategy including CEA66-DNA for 
induction of cell mediated immunity and protein CEA for antibody 
induction and/or vector-based CEA may augment immune responses 
in humans to the same degree as seen in non-tolerant species [23,27]. 
Furthermore, other novel attempts to break tolerance including passive 
transfer of monoclonal antibodies to tumor antigens, antibodies to cell 
growth factors and immunoregulatory agents as immune check-point 
inhibitors are urgently warranted to be combined in immunization 
trials [73,74].

Conclusion
The primary objective of the present study was to evaluate 
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immunogenicity of CEA-DNA immunization in the adjuvant setting 
of CRC patients. Previous results with CEA protein immunization 
have shown promising results with improved survival for CRC 
patients developing high titers of anti-CEA IgG antibodies and lytic 
IgA antibodies [8,75]. We therefore attempted to complement these 
reactivities by a CEA plasmid CEA66-DNA, which should amplify 
cellular immunity together with a plasmid tetwtCEA-DNA that had 
preclinically induced a strong anti-CEA response. Both the CEA66-
DNA and tetwtCEA-DNA schedules produced non-specific activation 
and antigen-specific cellular responses to CEA, particularly CEA66-
DNA given by a needle-free jet injection, but the responses were weak. 
The efficacy of DNA vaccines as a stand-alone adjuvant intervention in 
cancer patients appears to be of limited clinical value and efforts need 
to be devoted to combinatorial regimens including also proteins and 
immune check-point inhibitors.
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