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Abstract
Introduction: Review non-diabetes management medications that are commonly associated with either serious hyper- or hypoglycemia, or both, outline their 
mechanisms, and provide strategies for limiting these undesirable glycemic effects.

Methods: Literature search of Pub-Med for studies in which drugs induced hyperglycemia or hypoglycemia. The primary outcome for this review was the incidence 
and occurrence of hyperglycemia and or hypoglycemia 

Results: Both hyperglycemia and hypoglycemia are associated with negative outcomes. Blood glucose variation was significantly associated with mortality in non-
diabetic greater than diabetic patients. Medications may contribute to this glycemic variation manifested as either hyperglycemia or hypoglycemia. Many medications 
have been associated with aggravating hyperglycemia in diabetes mellitus patients, causing new hyperglycemia or outright diabetes in previously non-diabetic 
individuals. Steroids, immunosuppressive agents, antipsychotics and many other medications are commonly associated with hyperglycemia. On the other hand, 
hypoglycemia is an uncommon adverse effect associated with some antimicrobials and other medications. The risk may be increased, however, when such medications 
are used concomitantly with anti-diabetic agents.  Benefits of these medications associated with hyper- or hypoglycemia may offset the potential adverse effects of 
abnormal glycemic control making overall management of the patient a challenge. 

Conclusion: Hyperglycemia, hypoglycemia, and glucose variation have been shown to contribute to negative outcomes. Therefore, it is imperative for clinicians to be 
aware of medications that may adversely affect glucose control. Withholding these medications may be justified in certain situations; however, any decision to avoid a 
medication based on glycemic effects must be carefully weighed against their benefit as well as the risks and benefits of alternative therapies.
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Introduction
Hyperglycemia, hypoglycemia and blood glucose variability are 

associated with negative outcomes, including increased mortality in 
both individuals with or without diabetes mellitus (DM) [1-3]. Some 
medications alter glycemic hemostasis which manifests as either 
hyperglycemia or hypoglycemia [2]. Inconsistent caloric intake, stress, 
infections, organ failure, advanced age, intensive inpatient insulin 
regimens or inadequate glycemic therapy and polypharmacy also 
contribute to glucose alterations [4,5]. Therefore, controlling blood 
glucose (BG) in hospitalized or acutely ill patients is a challenge. 
Hormones involved in glucose hemostasis, such insulin, glucagon, 
catecholamines (CA), growth hormone, and cortisol, are also affected 
by some medications. This article aims to review non-DM medications 
medications that are commonly associated with either serious hyper- 
or hypoglycemia, or both, and discusses their mechanisms, as well as 
providing strategies for limiting or avoiding the undesirable glycemic 
effects.

Hyperglycemia
Drug-induced diabetes is a global issue that is frequently overlooked. 

Medications can either aggravate diabetes-associated hyperglycemia, or 
may cause new hyperglycemia episodes or outright DM in previously 
non-DM individuals. The American Diabetes Association (ADA) 
classify drug induced DM under “monogenic diabetes syndromes,” 
a specific type of DM that is drug- or chemical-induced [6]. Older 
age, high body mass index, or family history may increase the risk of 
medication induced hyperglycemia and impaired glucose tolerance 
(IGT) [5]. Regardless of the cause, the first step in managing patients 
with IGT, hyperglycemia or DM, should be preventing or mitigating 

modifiable risk factors through lifestyle modification including weight 
loss, maintaining a healthy diet, adequate physical activity and patient 
education. Clinical judgment along with continuous assessment of 
the patient’s clinical status, illness severity, nutritional status, and 
concomitant medications potentially affecting glucose concentration 
should be incorporated into decisions to avoid, hold or continue 
therapy [7]. If DM develops, it may be appropriate to consider 
management with anti-diabetic agents. 

Atypical antipsychotic

Second generation or atypical antipsychotics (AAP) are widely 
prescribed for the management of schizophrenia, other psychotic 
disorders and conditions with severe behavioral disturbance. Both 
typical antipsychotic (TAP) and AAP use may lead to metabolic 
abnormalities including hyperglycemia [8]. In addition, it should be 
recognized that schizophrenia itself may represent an inherent risk 
for developing type 2 DM [9]. Increased weight and concomitant use 
of valproic acid, selective serotonin reuptake inhibitors, or buspirone 
may also exacerbate hyperglycemia [10]. Antipsychotic-associated 
hyperglycemia occurs early in therapy but risk of new onset diabetes 
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mellitus (NODM) increases with chronic use [8,11]. AAP are associated 
with a higher risk of developing DM and more severe hyperglycemia 
compared to TAP [12]. AAP-associated hyperglycemia can be extreme 
and associated with ketoacidosis or hyperosmolar coma or death 
[11,12]. Therefore, in 2004 the Food and Drug Administration (FDA) 
issued a new warning on all APP drug labels regarding the increased risk 
of hyperglycemia and NODM [13]. Clozapine and olanzapine appear 
to have the highest risk and are also associated with a significantly 
higher risk of weight gain, impaired glycemic homeostasis and NODM 
[14,15]. Data on quetiapine is inconsistent; although minimal effect 
on glycemic control has been reported with ziprasidone, as well as 
aripiprazole [15-17] proposed mechanisms behind antipsychotic-
induced DM, include drug-induced weight gain and insulin resistance. 
Potential mechanisms for weight gain include blocking serotonin 2C 
(5HT2C) or histamine (H1) receptors, resulting in inhibited insulin 
secretion, insulin resistance, or impair glucose utilization [18,19]. 
Elevation of serum leptin or hyperprolactinemia may also induce 
insulin resistance [18,19]. In some cases, discontinuing the APP may 
resolve hyperglycemia; however, medication is generally required 
to prevent psychotic relapse and deterioration [9,19]. Both DM and 
schizophrenia are serious illnesses that require diligent management. 
Depending on patient and disease characteristics, it may be possible to 
substitute with a less diabetogenic APP. Fasting blood glucose (FBG) 
is recommended at baseline, 3 months, then annually for all patients, 
more frequently for those at higher risk of developing DM [20]. If 
patients develop hyperglycemia during treatment, injectable or oral 
anti-diabetic treatment may be initiated despite discontinuation of the 
suspect drug. 

Beta blockers (βB)

βB are commonly used for their cardiovascular benefits. However, 
Increasing FBG, NODM, and increasing hemoglobin A1c (A1C) have 
been linked to βB use [21]. The overall magnitude of FBG increase 
appears to be minor (0.6 mmol/L for pooled endpoint FBG) based on a 
meta-analysis of data from 1889 patients with DM [21]. Non-selective 
βB had a greater effect than selective βB (1.3 mmol/L and 0.15 mmol/L 
increases, respectively) in this meta-analysis although the literature as a 
whole is inconsistent [10,21-24]. Data are also inconsistent for NODM 
with βB use. Reanalysis of the NAVIGATOR study data showed a 
non-significant increase in NODM; valsartan was used as the βB and 
all participants met criteria for impaired glucose tolerance at study 
entry [25]. In contrast, a large meta-analysis evaluating NODM in 
participants without DM at randomization found an increased risk of 
NODM in patients prescribed βB as initial therapy for hypertension 
[22]. The extent to which βB-associated glycemic effects may diminish 
the known cardiovascular benefits of βB is uncertain. Therefore, it is 
recommended to prescribe or continue βB in DM patients as indicated 
while closely monitoring their BG and adjusting therapy for glucose 
management, if necessary [21].

Epinephrine (EPI)

EPI is a widely used vasopressor It contributes to stress-induced 
hyperglycemia and susceptibility of DM patients to the adverse 
metabolic effects [26,27]. When EPI is given as a drug, it acutely 
decreases insulin sensitivity and secretion, in individuals with or 
without DM [28,29]. The effect on glycogenolysis rapidly wanes; thus 
the EPI induced hyperglycemia is short lived. Notably, chronic use 
of EPI and other β2 agonists improves cellular glucose uptake and 
metabolism [30]. EPI has contradictory roles. While it may raise blood 
glucose, in some circumstances, it is associated with lowering glucose 

[26]. It is very difficult to isolate the causality on EPI as a vasopressor 
on glycemic control from other hyperglycemia contributing factors 
in critically ill patients. In patients who have stress- or EPI-induced 
hyperglycemia, it is more appropriate to manage the patient’s glucose 
than avoiding or withholding essential vasopressor therapy.

Niacin

Nicotinic acid (niacin) is commonly used alone or in combination 
to increase high-density lipoprotein cholesterol and lower triglycerides. 
Deterioration of glucose tolerance, elevation of FBG concentrations and 
development of NODM have been reported with niacin use [31-33]. 
Birjmohun et al found the incidence of niacin-induced hyperglycemia 
to be around 2.3% in a meta-analysis including 30 trials with 4749 
participants randomized to niacin or placebo [32]. Immediate release 
formulations showed the highest prevalence of hyperglycemia [33]. 
A review of consensus guidelines, published RCT, and non-RCT, 
concluded that increases in FBG are usually 4%-5% with niacin doses 
≤ 2.5 g daily, although increases may be greater in patients with DM 
[34]. Effects on A1c were nil to modest and reversible [33]. In contrast, 
another large meta-analysis with 26,340 non-diabetic participants 
followed for an average of 3.6 years found the risk of NODM was 
increased by 34% with niacin [35].  Niacin-associated hyperglycemia 
may develop due to modestly decreased insulin sensitivity [36,37].  
Although doses of niacin currently used may result in minor 
deterioration of glycemic control in patients with DM; those patient 
may experience a dose-related increase in their glucose intolerance 
[38]. It is generally recommended to defer niacin therapy while 
attempting to improve glycemic control in patients with impaired FBG 
or IGT, and withdraw therapy or reduced dose in patients with niacin 
induced NODM [34]. The cardiovascular benefits of niacin may offset 
the potential adverse effects on glycemic control as shown in ADMIT 
study [33]. Niacin-induced NODM is an infrequent adverse drug effect 
that warrants niacin treatment withdrawal or dose reduction. Thus, 
niacin can be safely used in patients with DM while BG levels may be 
closely monitored during the first few months of use [33].

Octreotide

Octreotide, a somatostatin analogue, is used for numerous 
conditions because if its effects on gastrointestinal (GI) hormones and 
blood flow. The  pharmacologic effects of octreotide on the counter-
regulatory hormones, insulin, glucagon, and growth hormone [39]. 
Resulting in hyperglycemia in 16% and hypoglycemia in 3% of treated 
patients with acromegaly, the only condition for which data are 
available [40]. Hyperglycemic effects can be mild or aggressive with 
overt DM developing through the inhibition of insulin release [41]. 
Due to direct effects on insulin secretion, octreotide may be useful for 
preventing rebound hypoglycemia in the management of sulfonylurea 
(SU) and dipeptidyl peptidase-4 (DPP-4) inhibitor overdoses [42,43]. 
Endocrine Society guidelines recommends monitoring bedside point 
of care (POC) glucose for at least 24 to 48 h after octreotide initiation, 
even in patients who were previously normoglycemic [44]. If POC 
levels are persistently above 7.7 mmol/L, therapeutic intervention to 
reduce BG should be considered [44].

Pentamidine

Most patients receiving pentamidine are immune-compromised 
and require treatment or prevention of Pneumocystis jiroveci (carinii) 
pneumonia (PJP). Intravenours and aerosolized pentamidine use 
has been associated altering glucose heamostasis [45]. Retrospective 
studies indicate 9%-32% of patients treated with pentamidine develop 
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hyperglycemia; mean onset is approximately 52 days after initiating 
therapy [46]. Pentamidine induced hyperglycemia is attributed to 
either hyperamylasemia causing an increase in glucagon release or 
decreased insulin release, especially after a meal [47]. In vitro studies 
found that pentamidine induces irreversible β cell damage, secretory 
defect and necrosis precipitating the development of DM [48-50]. 
Risk factors associated with hyperglycemia include higher cumulative 
or single pentamidine dose and renal impairment [46]. Dysglycemic 
effects of pentamidine can be delayed. Hyperglycemia and DM, with or 
without preceding hypoglycemia, can occur up to several months after 
cessation of therapy [46,47]. Therefore, patients should be educated on 
signs and symptoms of both hyper- and hypoglycemia, as well as their 
management and the importance of regular BG monitoring [47].

Protease inhibitors (PIs)

PIs are a critical component of the antiretroviral therapy for 
managing HIV and AIDS. However, many metabolic complications 
have been associated with PIs. The FDA issued a Public Health 
Advisory in 1997 describing post-marketing surveillance reports of 
NODM, exacerbation of preexisting DM, IGT and hyperglycemia in 
patients receiving PIs [57]. The incidence of hyperglycemia ranges 
between less than 1% to 6% and occurs as early as two weeks after 
initiation of PI therapy [52,53]. Overt DM was reported in 6% to 13%, 
most commonly with indinavir, and was more frequently detected 
later in therapy [51-54]. Ritonavir and saquinavir, or concomitant 
medications affecting glucose control, such as GC or pentamidine, 
increase the risk of DM [52,55]. PIs induce IGT by either induction 
of peripheral insulin resistance or by reduction of β-cell function [53]. 
Although, metabolic adverse effects of PIs may not be serious enough 
to warrant discontinuation and may be resolved on discontinuation 
[56]. The International AIDS Society-USA Panel and the Panel on 
Antiretroviral Guidelines suggest avoiding PI-based regimens as initial 
therapy in patients with a concern of metabolic toxicity, preexisting 
abnormalities of glucose metabolism or with the first-degree relative 
with DM [55,57]. When a PI-based regimen cannot be avoided, routine 
monitoring of glucose and A1C is appropriate. Treatment with insulin 
or oral anti-diabetic agents should be considered if DM develops.

Statins

HMG-CoA reductase inhibitors, commonly referred to as 
‘statins’, are widely used in the primary and secondary prevention of 
cardiovascular diseases to lower serum cholesterol. Mixed results have 
been reported for effects of statins on glucose control; however, in 2012 
the FDA requested a safety label change on all statins to include risk 
of increased A1C and FBG concentrations [58]. Data supporting this 
statement showed a 5-25% increased risk of NODM or DM treatment 
in patients receiving statin [59,60].  However, a recent cohort study 
showed no increase in NODM with statins [61]. Onset of  initiating 
DM treatment or NODM reported as early as  6 months up to years 
after starting statin [61,62]. The risk of DM may increase with statin 
dose, intensity and is greater in individuals with pre-existing metabolic 
syndrome or prediabetes [61-63]. An observational study evaluating 
the effect of statins on FBG over a 2 year follow up period reported a 
statin-associated increase of 0.5 mmol/L in patients with DM and 0.2 
mmol/L without DM [63]. The precise mechanism(s) for statin-induced 
DM remains unclear, although hypotheses include statin induced 
insulin resistance, inhibited β cell insulin secretion and synthesis,  and 
decreased insulin-mediated cellular glucose uptake [64-66]. Based on 
current literature, the long-term CVD benefit of statins outweigh the 
risk of DM. Therefore, withholding statins in those at high risk of CVD 

is not recommended for the relatively minor concern of progression 
to DM [64].

Thiazide

Thiazide diuretics are indicated as adjunctive therapy in congestive 
heart failure-associated edema and hypertension. However, they 
have been linked to IGT, hyperglycemia more than NODM [61-69]. 
Hydrochlorothiazide or chlorthalidone have been reported to cause 
hyperglycemia more often than other diuretics, and a higher incidence 
of NODM was reported with chlorthalidone in the ALLHAT trial after 
2 and 4 years follow-up [68]. The exact mechanism of thiazide-induced 
hyperglycemia remains unclear. One of the proposed mechanisms is 
through thiazide-induced hypokalemia, resulting in decreased insulin 
secretion and/or reduced insulin sensitivity [67,70]. On the other hand, 
a subgroup analysis of the PEAR study found no correlation between 
thiazide-induced changes in potassium and FBG levels [71]. Restoration 
of normoglycemia has been observed after thiazide discontinuation 
[72]. Nonetheless, avoiding or holding diuretics in patients with DM or 
hyperglycemia may be inappropriate since thiazide is usually necessary 
to provide symptomatic relief or achieve cardiovascular goals. Starting 
with a low dose and optimizing serum potassium concentrations is 
recommended when initiating thiazide in patients with DM [73].

Transplant-associated hyperglycemia
Medications for post-transplant immunosuppression (IS) 

account for 74% of new onset diabetes after transplant (NODAT); 
Glucocorticoids (GC) are the major cause [74]. Calcineurin inhibitors 
(CNI) are also implicated. Other NODAT risk factors include 
hypomagnesemia, which may decrease insulin sensitivity, and hepatitis 
C infection recipients [75]. Worsening of hyperglycemia in individuals 
with known pretransplant DM and hyperglycemia without pre-existing 
DM have been reported within the first 72 hours after transplant 
[76,77]. NODAT shares many similarities with type 2 DM but in some 
cases may be reversible [78,79]. β-cell dysfunction is thought to be the 
main factor in the pathogenesis of NODAT [80,81].

Calcineurin inhibitors (CNI)

Cyclosporine (CsA) and tacrolimus (Tac) remain a cornerstone of 
maintenance IS after transplant impaired glucose metabolism remains 
an issue associated with CNI-containing regimens despite the GC 
reduction allowed by CNI [78]. Toxic effects of CNI on the pancreas 
may contribute to insulin resistance and reduction in insulin 
secretion [82].

DIRECT study results indicate a significantly lower risk of NODAT 
with CsA regimens versus Tac in the first six months posttransplant 
[83]. Risk of NODAT increases with Tac trough concentrations 
>15 ng/mL during the first month after transplantation [84]. Tac’s 
profound diabetogenic effect may be due to Tac specific binding to 
FKBP-12 which is preferentially located in β-cells, resulting in Tac 
concentrating there [85]. CsA specifically binds to cyclophilin which 
is preferentially located in the heart, liver and kidneys [85]. Reducing 
the target for Tac trough concentrations  below 10 ng/ml,Tac dose, or 
switching from Tac to CsA may lower the incidence of NODAT or be 
effective in managing NODAT [84,86]. Conversely, reducing GC doses 
or switching from Tac to sirolimus (Sir) does not appear to improve 
glycemic control; insulin resistance may even worsen with Sir [87,88]. 
Sir itself impairs pancreatic β –cells responses and insulin production 
[89,90]. Ability to reduce IS doses or modifying IS regimen is often 
limited by other side effects of these medications and the risk of acute 
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organ rejection [78]. All transplant patients need ongoing monitoring 
of FBG and periodic evaluation of A1C throughout the post-transplant 
period [86,89]. Management of patients with NODAT should follow 
a step-wise approach, similar to that followed for patients with type 2 
DM [89]. 

Glucocorticoids (GC)

GC are widely prescribed for their significant anti-inflammatory 
and IS benefits. However, they are associated with hyperglycemia in 
individuals with or without DM and with development of NODM [88-
91]. Hyperglycemia may occur within 24 hours of receiving greater than 
physiologic doses, which is more than 10 mg of prednisone daily or 
equivalent [90,92]. The risk of glucocorticoids induced hyperglycemia 
(GIH) varies depending on GC duration of therapy, potency, dose, route 
of administration [93,94]. An intermediate duration GC administered 
once daily will predominantly cause post-prandial hyperglycemia with 
a gradual decline toward normal overnight [88,91]. BG is more likely 
to be high throughout the day with multiple GC doses per day [91]. 
Increased insulin resistance occurs with GC-induced DM, similar 
to type 2 DM [88].  GCs antagonize the metabolic effects of insulin, 
particularly in the postprandial state through effects on reduced 
postprandial insulin secretion, promoting gluconeogenesis, increasing 
lipolysis and enhancing the effects of counter-regulatory hormones [94-
96]. GC may also cause β cell dysfunction affecting insulin sensitivity 
and release. The treatment of choice for GC-induced hyperglycemia 
will vary depending on the GC used, frequency, duration of action, 
duration of therapy and current anti-diabetic regimen, if any (Table 
1). Basal-bolus insulin (BBI) may be initiated with either neutral 
protamine Hagedorn (NPH) or glargine insulin for hospitalized 
patients on GC with persistent hyperglycemia above or equal 11.1 
mmol/L [7,97].  Both types of insulin have been shown to be are equally 
effective in small retrospective studies [7,97]. Any of 3 approaches are 
acceptable for insulin dosing: weight based insulin regimen, steroid 
dose based regimen or focused prandial insulin therapy [88].  Oral anti-
diabetic agents may be considered for outpatient management, when 
hyperglycemia is mild, or for short-term GC use [81]. Unfortunately, 
the risk of hypoglycemia may increase with most oral agents due to 
their slow onset and prolonged duration of action, as well as lack of 
selectively for postprandial hyperglycemia [81]. Shorter acting agents 
might be more appropriate, but exenatide is the only agent studied for 
GIH (Table 2) [88]. Exenatide targets postprandial hyperglycemia and 

has been shown to prevent prednisone induced glucose intolerance [98].

Hypoglycemia
Severe hypoglycemia has been associated with increased risk of 

adverse events including mortality and prolonged hospitalizations 
[99,100]. Several medications have been reported to increase the risk 
of hypoglycemia. Most commonly reported offending agents included 
trimethoprim-sulfamethoxazole, βB, quinolones, pentamidine, quinine, 
angiotensin- converting enzyme inhibitors (ACEI), angiotension 
receptor blockers (ARB) and insulin-like growth factor [101,102]. 
However, A systematic review showed that stronger evidence 
supported the associations between quinolones, quinine, pentamidine 
and hypoglycemia as discussed below [101]. Certain anti-diabetic 
agents are at higher risk of hypoglycemia when used as monotherapy 
compared to other classes. Patients with renal dysfunction, liver 
disease, malnutrition, or advanced age are particularly at higher risk 
of medication-induced hypoglycemia [103,104]. Although medication 
induced hypoglycemia may be uncommon, precautions are necessary 
because failure to recognize hypoglycemia can be fatal. A standardized 
hospital-wide and nurse-initiated hypoglycemia treatment protocol 
should be in place to address hypoglycemia [2].

Fluoroquinolones (FQ)

FQ are frequently prescribed antibiotics. Increased use of these 
drugs has raised concern regarding rare but severe dysglycemia that 
may be fatal [105,106]. FQs have higher rates of both hyperglycemia 
and hypoglycemia compared to macrolides [107]. Higher risk 
of hypoglycemia was noted in patients concomitantly receiving 
antidiabetic agents in a nationwide cohort study [107]. Hypoglycemia 
has also been reported in patients without DM or not on hypoglycemic 
medication. Episodes occurred mostly at the beginning of FQ therapy 
and most occur after several days [108,109]. Moxifloxacin has 
been associated with the highest risk of hypoglycemia, followed by 
levofloxacin and ciprofloxacin [107]. FQ may cause hypoglycemia by 
increasing the release of insulin via a blockade of ATP-sensitive K+ 
channels in a dose-dependent manner and FQ itself may enhance the 
glucose-induced insulin secretion [110]. Therefore, careful monitoring 
of blood glucose is recommended when FQ are used, especially if co-
administered with anti-diabetic agents.

Glucocorticoids Equivalent dose 
(mg) 

Relative glucocorticoid 
activity 

Peak action 
(hr) 

Duration of 
action (hr) 

Effect on glucose Initial insulin regimen options

Short Acting 
Hydrocortisone 20 1 1-4 8-12 Short episodes of hyperglycemia 

& associated with higher 
glycemic variability [99].

Basal-bolus insulin 0.3 to 0.5 Units/kg per day 
[45].Cortisone 25 0.8 1-4 8-12

Intermediate Acting
Prednisone 5 4 4-6 12-36 Single dose: hyperglycemia 

during the afternoon and night 
without effect in fasting glucose 
[89,100]. Divided doses: 
persistent hyperglycemia 

-Basal-bolus insulin 0.3 to 0.5 Units/kg per day [45].
-Once daily oral regimen dose; NPH once daily at 
the time of steroid dose [97,101]; NPH 0.5 units/
mg glucocorticoid (range 0.25–1.0 units) daily 
administered at the time of the GC dose [7] 
-Twice or more dosing: NPH twice a day [101]; 
NPH 0.5 units/mg GC (range 0.25–1.0 units) in 
divided doses twice daily [7]

Prednisolone 5 4 4-6 12-36
Methylprednisolone 4 5 4-6 12-36
Triamcinolone 4 5 4-6 12-36

Long Acting
Dexamethasone 0.75 30 1-2 36-72 Hyperglycemia that lasts >24 h, 

with a slight decline during an 
overnight fast [81].

-Basal-bolus regimen using long acting insulin 
[97,101]
-In patients already on BBI regimen; use 140–
150% of BBI   [7]
-Start NPH 3 units/mg of dexamethasone or 
equivalent in divided doses twice daily [7]

Betamethasone 0.6 30 ? 36-72

Table 1. Properties, dosing equivalents, effect on glucose and suggested insulin regimens of systemic corticosteroids.

Table adapted but modified from Liu D et al., 2013 [138]; Furst et al., 2012 [139]. BBI: Basal-Bolus insulin, hr: hours
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Pentamidine

Both hypoglycemia and hyperglycemia have been observed 
with pentamidine. Hypoglycemia occurs in 7%-38% of patients 
receiving pentamidine, either parentally or inhaled [45,111]. Onset of 
hypoglycemia may appear within hours to days after the first dose [47]. 
Early, sudden, sever and fatal hypoglycemia preceding hyperglycemia 
has also been reported [47,112]. Hypoglycemia may be attributed 
to an early excessive insulin leakage from β-cells and the absence 
or poor response of β-cells to glucagon [46]. Pentamidine induced 
nephrotoxicity and kidney dysfunction may prolong insulin action and 
contribute to hypoglycemia [47]. Patients should be educated about 
signs and symptoms of hypoglycemia and frequently monitor BG while 
on therapy.

Quinines

Parenteral quinine is no longer commercially available in the U.S 
[113]. Both quinine and quinidine including hydroxychloroquine may 
cause or aggravate hypoglycemia by stimulating insulin secretion, but 
quinine’s effect is more potent [113,114].

Conclusion
Hyperglycemia, hypoglycemia and glucose variation contribute 

to negative outcomes in DM and non-DM patients. Medications may 
play a significant role in glucose hemostasis with multiple mechanisms 
potentially contributing to dysglycemia. Knowing the mechanism(s) by 
which a medication induces hyperglycemia or hypoglycemia could help 
guide therapy and determine if the clinical benefit of the medication 
outweighs dysglycemic risks. Medications that pose higher risk of 
hyperglycemia or hypoglycemia may be avoided when therapeutic 
alternative exist while highly beneficial medications are appropriately 
selected despite their effect on glucose homeostasis.
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