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Free radicals and their health detrimental effects 
Reactive oxygen species

Reactive oxygen species (ROS) in vivo possess important roles 
in living organisms through their beneficial and detrimental effects 
[1,2]. Free radicals are formed in tissue cells by many endogenous and 
exogenous causes [3]. They are produced either (i) from normal cell 
metabolisms in situ (normal aerobic respiration i.e. mitochondria, 
stimulated polymorphulated leucocytes and macrophages) [4] or 
(ii) from external sources (pollution, cigarette smoke, radiation, 
medication) [5]. Oxygen free radicals (such as hydroxyl radicals; 
superoxide radicals and other active oxygen species such as singlet 
oxygen) adversely alter lipids, proteins, and DNA and trigger a number 
of human diseases [6]. A role of lipid peroxidation and oxidative stress 
in the association between thyroid diseases and breast cancer has been 
claimed by Dominguez and Castelao (2008) [7]. The ability of ROS to 
structurally modify cellular components, gene expression and protein 
production has led to the implication of their involvement in a variety 
of health diseases [8]. More specifically, ROS generate DNA oxidative 
damage and adversely affect biological membranes (e.g. LDL) of which 
pathological consequence, including cancer and cardiovascular diseases 
are well established [9]. Several of the most common in vivo ROS are 
shown in (Table 1), together with their major sources and target of 
damage [10]. 

LDL oxidative modification and atherosclerosis

Over the last few years, extensive clinical and epidemiologic 
research evidence has been gathered on the role of oxidized LDL 
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(low-density lipoproteins) in the progression of atherosclerosis, as 
a risk factor for the development of coronary artery disease [11,12]. 
Atherosclerosis is a progressive disease of the arterial tree that 
involves deposition of lipid, mostly oxidized LDL, in the arterial 
intima leading finally to a thickening of the arterial wall and reduced 
luminal blood flow [13]. Oxidative modification of LDL, a lipid 
peroxidation reaction driven by free radicals is therefore a key step 
in the early stages of atherosclerosis [14,15]. The relationship between 
circulating ox-LDL and subclinical atherosclerosis has been recently 
explored and confirmed in one case control study performed by Fang, 
et al. (2011) [16] and two community-based cohort studies [17,18].

DNA oxidative damage and carcinogenesis

The development of cancer is a multistep process that involves 
a complex series of cellular and molecular changes mediated by a 
diversity of endogenous and exogenous stimuli [19]. It has recently 
become apparent that ROS generation from mitochondria first as the 
cellular response to oxidative stress and DNA damage is closely linked 
to carcinogenesis [20]. A body of research has in depth investigated 
into mechanisms of oxidative DNA damage trying to clarify how 
the components of the repair pathways may influence the cancer 
transformation. [21,22]. DNA damage can take many forms, ranging 
from specifically oxidised purine and pyrimidine bases (more than 
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20 such oxidative lesions have been identified) to gross DNA changes 
such as strand breaks, sister chromatid exchange, and the formation 
of micronuclei [23]. According to one of the proposed oxidative 
mechanisms, hydrogen peroxide can cause DNA strand breakage, by 
generation of the hydroxyl radical (OH·) close to the DNA molecule, 
via the Fenton reaction.

H2O2 + Fe2+   → OH· + OH- + Fe3+

This may result in DNA instability, mutagenesis and ultimately 
carcinogenesis [24]. Specific DNA oxidation products accumulate 
depending on the ROS involved, its rate of production, and the cell’s 
ability to protect or repair its DNA insult. Research efforts are intense 
to further elucidate DNA base excision repair, the primary mechanism 
to protect cells from genotoxicity caused by ROS [25]. 

Most commonly used biomarkers of oxidative stress 
A number of oxidative biomarkers have linked oxidative stress and 

the development of health diseases. An overview of the most commonly 
used is given below: 

Estimation of plasma levels of oxidized LDL via formation of 
conjugated dienes (c.d) 

The formation of conjugated dienes is generally accepted as 
evidence of lipid peroxidation and is due to re-arrangement of the 
double bonds which in presence of oxygen can form hydroperoxides 
[26]. A convenient and very frequently used method for monitoring 
the level of plasma oxidized LDL is the process of copper-induced LDL 
oxidation continuously through the spectrophotometric measurement 
of diene absorption at 233 nm [27]. The chronology of LDL oxidation 
by Cu2+ ions can be divided into three consecutive time phases: lag 
phase, propagation phase and decomposition phase [28]. During the 
lag phase, LDL becomes progressively depleted of its endogenous 
antioxidants, with α-tocopherol as the first to be lost and β-carotene as 
the last to remain. Depleted of its antioxidants the LDL particle enters 
the propagation phase in which the polyunsaturated fatty acids (PUFAs) 
are rapidly converted to conjugated lipid hydroperoxides indicated 
by the increase in absorbance at 233 nm [29]. Secondary reactions 
of LDL oxidation leading to aldehydes (malondialdehyde, hexanal, 
4-hydroxynonenal etc.), are accelerated by transition metal ions, such 
as Fe2+, which may catalyse decomposition of  lipid hydroperoxides to 
alkoxyl radicals  in a Fenton-type reaction [30]: 

LOOH + Fe2+   → LO· + OH- + Fe3+

Biomarkers of DNA oxidative damage

Among many kinds of DNA damage that occur due to ROS and that 
increase cancer risks, the most studied base damage without a question 
is 8-oxoguanine (8-oxoG) [31]. Generation of (8-oxoGua) in DNA is a 

mutagenic and potentially carcinogenic event since the oxidised base has 
altered hydrogen bonding or “code specificity”: preferentially forming 
base pairs with adenine rather than cytosine [32]. The modified base 
8-oxo-guanine, its deoxy-nucleoside derivative 8-OH-dG (8-hydroxy-
2’-deoxyguanosine) and 8-oxo-adenine (Figure 1) have been used as 
useful markers of oxidative DNA damage [9,10]. The effect of natural 
antioxidant vitamins against DNA oxidative damage will be extensively 
discussed in the section 3. 

The Japan Institute for the Control of Aging [33] has developed an 
in vitro enzyme-linked immunosorbent assay (ELISA) for quantitative 
measurement of the oxidative DNA adduct 8-OH-dG in tissue or urine 
samples. As creatinine levels in urine are a measure of the concentration 
of the fluid, they co-vary with 8-OH-dG and determination of urinary 
creatinine is important in expressing the level of this DNA oxidative 
product with this method [27]. 

A method known as the COMET assay is an alternative sensitive and 
valuable technique that allows the detection of intercellular differences 
in DNA [34]. It allows the determination of oxidised DNA bases by 
making use of repair enzymes to introduce strand breaks at sites where 
oxidised bases are present [35]. The sensitivity and specificity of the 
COMET assay is greatly enhanced if the nucleoids are incubated with 
bacterial repair endonucleases that recognize specific kinds of damage 
in the DNA and convert lesions to DNA breaks, increasing the amount 
of DNA in the comet tail [36]. 

Lipid hydroperoxides

Lipid hydroperoxides are the primary products of lipid peroxidation  
and can be measured in several different ways [10,37]:

(i) by HPLC coupled with chemiluminescence. This method is very 
sensitive and interference by biological antioxidants is avoided.

(ii) by GC-MS after reduction to alcohols

(iii) by the iodometric method, which is a sensitive method  involving 
the reaction of hydroperoxides with iodide in acid to form iodine 
as shown below:

ROOH + 2H +2I-R-OH +H2O +I2

(iv) by the FOX (Ferric oxidation of Xylenol). This a highly 
reproducible method for biological samples, based on the fact that 
hydroperoxides oxidise ferrous ion (Fe++) to ferric ion (Fe+++) that 
can be detected by use of ferric sensitive dyes [38].

Measurement of thiobarbituric acid reacting substances 
(TBARS)

The TBARS test is still the most frequently used test to assess 
secondary products of lipid peroxidation [39]. Among these substances, 
malondialdehyde (MDA), which is formed in vivo from trienes via 

Radical Formation Target or type of damage

Hydroxyl (OH·) Production from O2 or H2O2 in presence of transition metals Damage to DNA
and proteins

Superoxide (O2
·-) Produced enzymatically by e-  addition to O2by SOD, or non-

enzymatically from H2O2  

Attack biological membranes,
sugars (oxidative damage)

Peroxyl or alkoxy  (ROO· , RO·)  Formation through the breakdown of organic peroxides Lipid peroxidation reaction and 
initiation of atherosclerosis 

Singlet oxygen (1O2) Photochemical activation of 1O2  in presence of sensitizers Lipid photoxidative damage skin-damage, carcinogenesis
Nitric oxide (NO*) In vivo production from L-arginine Pathogenetic in overproduction

Table 1. Range of the most common in vivo reactive oxygen species (Kiokias 2002) [10]
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unsaturated peroxides, reflects unsaturated fatty acid composition as 
much as extent of lipid peroxidation [40]. MDA reacts with TBA reagent  
(in a 1:2 molar ratio) on heating under acidic conditions to give a red 
chromophore, which is measured by UV at 532 nm or by fluorescence at 
553 nm [41] TBARS test is easy to perform and inexpensive. However, 
it lacks specificity as chromogens are formed with many aldehydes 
other than MDA, and with carbohydrates, amino acids etc [41].

Determination of Isoprostanes 

Isoprostanes are prostaglandine (PG) like compounds that are 
produced independently of the cyclooxygenase enzyme by free radical 
catalysed-peroxidation of arachidonic acid, and similar products are 
also formed during oxidation of EPA and DHA [9]. A substantial body 
of evidence indicates that measurement of F2 –IsoP levels (esterified 
in human tissues) provides a direct and reliable approach to assess 
oxidative damage in vivo compared with other methods (e.g.TBARS). 

According to Barocas, et al. (2011) [42] the oxidative stress 
measured by urine F2-isoprostane level is strongly associated with 
prostate cancer. 

Other bio-indicators

During the last decade, the development of immunochemical 
detection of HNE-histidine cytotoxic adducts (4-hydroxynonenal (4-
HNE)), has opened more advanced methodological possibilities for 
qualitative and quantitative detection of lipid peroxidation in various 
human and animal tissues [43]. In addition, short chain hydrocarbon 
gases, e.g. ethane and pentane, are produced in vivo by thermal or ion 
catalysed decomposition of lipid hydroperoxides. Measurement of 
these exhaled gases by GC has therefore been largely applied to assess 
lipid peroxidation [44]. 

Protective effects of vitamins against oxidative stress
Biological antioxidants

The term biological antioxidants refer to compounds that protect 
biological systems against the potentially harmful effect of reactions 

that cause extensive oxidation [45]. They can act at several different 
stages in an oxidative sequence by:

 - Removing oxygen or decreasing local O2 concentrations

 - Removing catalytic metal ions or reactive oxygen species such as 
O·

2- andH2O2

 - Scavenging initiating radicals such as OH·, RO·, RO2
·

Broadly, we distinguish between two types of biological antioxidants:

(a) Endogenous  (intracellular) antioxidants: Oxygen metabolism 
occurs within cells where a variety of enzymes and proteins are acting 
specifically to remove oxygen intermediates. Such substances include 
catalase, selenium dependent glutathione peroxidase, copper and 
zinc-dependent superoxide dismutase, uric acid, and the transition 
metal-binding proteins, such as transferrin and caeruloplasmin [9]. 
These compounds are called endogenous antioxidants and offer 
protection at several different levels within the cells for example 
by preventing radical formation, repairing oxidative damage and 
increasing elimination of damaged molecules [38]. 

(b) Dietary antioxidants /focus of the current analysis: In addition 
to the endogenous antioxidants, nature has offered a wide range 
of  nutritional compounds with strong antioxidant activities.  
Among these certain fat- or water-soluble vitamins can act as 
radical scavengers in model biological systems and in the human 
organism [46]. This paper focuses on selected compounds with 
vitamin or provitamin A activity given that tissues deficient in such 
nutrients may be prone to harmful peroxidation reactions and more 
specifically: 

(i) Vitamin E: It comprises a category of  eight monophenolic 
compounds (known as Tocopherols and tocotrienols) with strong 
reported antioxidant activities in food and biological systems, 
mainly acting as chain breaking antioxidants that inactivate free 
radicals via their hydrogen donating character [10]

(ii) Vitamin C: A widespread vitamin in nature -in many fruits and 
vegetables- well known as antioxidant with multi-functional 
effects (incl. metal chelating properties) that can act synergistically 
with chain breaking antioxidants (e.g. tocopherols, flavonoids) 
resulting into synergistic effects [9]

(iii) Provitamin A: (α, β-carotenes and β-cryptoxanthin): 40-carbon 
terpenoids widely available in nature with well-known scavenging 
activities against free radicals that are trapped in their conjugated 
structure. [5].

(iv) Since the above-mentioned  antioxidants are exogenous in 
nature, their levels can be manipulated by supplements and 
dietary modifications Natural occurrence, chemical structure 
and mechanism of antioxidant action of the above dietary 
antioxidants have been detailed by various researchers 
including Vance, et al. 2013 [47] and  Kiokias, et al. 2009 [48]. 
Arvanitoyannis, et al. (2009) [49] reviewed the various available 
methods for the determination of chain-breaking antioxidant 
activity in food and biological systems. The total peroxyl radical 
trapping parameter (TRAP) and the oxygen radical absorbance 
capacity assay (ORAC) have served as the most commonly used 
methods of antioxidant capacity in food and biological systems 
during the last two decades [50,51]. Section 3 provides more 
details about the in vivo activity of antioxidant vitamins against 
LDL and DNA oxidative damage.
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Figure 1. Selective products of DNA oxidative damage commonly used as bio-indicators of 
oxidative stress: (a) 8-OH-deoxyguanosine  (b) 8-oxo adenine  (c) 8-oxo-guanine (Kiokias, 
2002) [10]
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Human studies on the effect of natural antioxidant vitamins 
against LDL damage/atherosclerosis

(a) Effect of vitamins as individual compounds against LDL 
oxidation: A large number of studies have examined the effects of 
antioxidant vitamins either individually or in combination, on ex vivo 
LDL oxidation with most information being available for the effects of 
provitamins A, vitamins C and vitamin E [38].

Provitamin A carotenoids. Major non-provitamin A carotenoids 
(lycopene, lutein, and zeaxanthin) and provitamin A compounds 
carotenoids (Figure 2) have different biological activities and efficacy, 
depending on their food content, dietary intake, bioavailability, and 
bioconversion [52]. Epidemiologic studies have shown that diets rich 
in provitamin A-containing foods are associated with a decreased 
risk of conducting cardiovascular problems and other pathologic 
conditions [53]. The disease-preventing activity of β-carotene and other 
provitamin A carotenoids could be ascribed either to their conversion 
into retinoid or to their activity as intact molecules. The results of 
several human intervention studies, however, indicate that a high-
dose supplementation with β-carotene, not only does not significantly 
decrease the risk for development for atherosclerosis, but could even be 
harmful to smokers or former asbestos workers [54]. Thus, it may be 
that β-carotene and other carotenoids (e.g. astaxanthin) promote health 
when supplemented at physiologic amounts in foods but could even 
present adverse prooxidant harmful activities when given in high doses 
and under highly oxidative conditions [44]. 

Vitamin C. Ascorbic acid  is a water-soluble antioxidant, and 
as such is expected to be removed from LDL during isolation. In an 
earlier study, Wen, et al. (1997) [55] did not find any significant effect of 
dietary supplementation with vitamin C on LDL oxidation in smoking 
volunteers.  On the contrary other researchers have reported beneficial 
effects of dietary supplementation with 1000 mg vitamin C for 4 weeks 
[56] or 500 mg/d for 2 months [57]  against LDL oxidative deterioration.  
In addition, McRae (2008) [58] noted that Vitamin C supplementation 
reduced serum LDL and triglycerides levels.

Vitamin E: Hodis, et al. (2012) [59] reported that α-tocopherol 
supplementation (400 IU/day) significantly raised plasma vitamin 
E levels (P< 0.0001) whereas reduced circulating oxidised-LDL (P= 
0.03) and LDL oxidative susceptibility (P< 0.01). Studies that included 
vitamin E supplementation generally support a significant protection of 
LDL usually at doses higher than 400 IU/day [60].  As noted by Rizvi, 
et al. (2014) [61] Vitamin E is the major lipid-soluble component in the 
cell antioxidant defense system with numerous important roles within 
the body because of its antioxidant activity. However, it has also been 
suggested that when accompanying antioxidants such as ubiquinone 
and vitamin C are not available (to react and quench the vitamin E 
radicals) a prooxidant tocopherol effect could be induced [44]. Actually 
Niki (2010) [62] noted that recent human clinical trials with vitamin E 

have not yielded positive results against LDL oxidative deterioration on 
the contrary to  in vitro experiments. 

(b) Effect of vitamins’ antioxidant mixtures against LDL oxidation

A growing body of human clinical investigation has focused into 
combination of various antioxidants in order to explore the potential of 
interactions because of varying modes and mechanisms of antioxidant 
action [9].  Interestingly, a few studies that were designed to supplement 
subjects with mixtures of antioxidant vitamins in generally observed 
an enhanced beneficial effect on oxidative stability of LDL, presumably 
resulting from a synergistic action between the vitamins [44,54]. 
Cocate, et al. (2015) [63] have recently conducted a cross-sectional 
study and observed that the total daily carotenoid intake of provitamin 
A carotenoids (β-cryptoxanthin, β and α-carotene lycopene) mixtured 
with xanthophylls (lutein plus zeaxanthin,) was inversely associated 
(p<0.05) with the plasma oxidised-LDL concentrations. Kiokias and 
Gordon (2003) [27] supplemented for 3 weeks 30 healthy volunteers 
with a carotenoid mixture (palm oil carotenes, lycopene, paprika, 
lutein, bixin in a total amount of 30 mg active carotenoid /day) and 
reported an increased resistance of LDL to oxidation, compared with 
placebo (monitored by CD at 233 nm).  

Boushehri, et al. (2012) [64] examined the effect antioxidant 
vitamins on serum oxidized LDL levels in male subjects with 
cardiovascular disease risk factors. They reported that a diet enriched 
with a combination of vitamin C (500 mg), vitamin E (400 IU), 
ß-carotene (15 mg), was strongly associated with lower serum oxidized 
LDL levels. Similarly, in an earlier study [65] (Nyssonen, et al. 1994), a 
daily supplementation for 2 months with a mixture of vitamin E (200 
mg) together with vitamin C (400 mg) and β-carotene (20 mg) decreased 
significantly the susceptibility of LDL to oxidative deterioration. 

Human studies on the effects of antioxidant vitamins against 
DNA damage/carcinogenesis

(a) Effect of vitamins as individual compounds: Steady state 
estimates of cellular DNA oxidation, in general have provided support 
for a beneficial role of antioxidant vitamins in DNA protection [66]. 

Provitamin A compounds: Lorenzo, et al. (2009) [67] have 
investigated the biological properties of beta-cryptoxanthin, in cell 
culture model systems, using the comet assay to measure DNA damage. 
They reported that at low concentrations, close to those found in 
plasma, beta-cryptoxanthin does not itself cause damage, but rather 
protects transformed human cells from damage induced by H(2)O(2) 
or by visible light in the presence of a photosensitizer. 

Astley, et al. (2004) [68] supplemented healthy male volunteers with 
lutein, beta-carotene or lycopene (natural isolate capsules, 15 mg/d, 4 
weeks) and observed that both beta carotene and non-provitamin A 
carotenoids  exerted an antioxidant protection by scavenging DNA-
damaging free radicals and modulation of DNA repair mechanisms. On 
the other side, Collins and Azqueta and (2012) [34] stated that studying 
reports from the last 5 years, revealed a clear distinction between effects 
of pro-vitamin A carotenoids (carotenes and β-cryptoxanthin) and the 
effects of non-vitamin A carotenoids (lycopene, lutein, astaxanthin and 
zeaxanthin). Whereas the compounds of the latter group are almost 
invariably reported to protect against DNA damage, the provitamin 
A carotenoids show a more varied spectrum of effects, sometimes 
protecting and sometimes enhancing DNA damage. 

Vitamin E: Makpol, et al. (2010) [69] observed that alpha-
tocopherol protected against H(2)O(2)-induced DNA damage and 

 
Figure 2. Structure of the provitamin A carotenoids (Kiokias 2002) [10]
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this modulation was affected by donor age.  Ragin, et al. (2010) 
[70] conducted a human trial showing that an intake of food rich in 
α-tocopherol could decrease levels of DNA oxidative adducts. Asgard 
(2014) [71] reported a significant decrease of catechol-induced (1 
mM) general DNA damage in the presence of 20 μM of α-tocopherol. 
On the contrary, Barcelos, et al. (2011) [72] supported that dietary 
supplementation with α-tocopherol can even induce DNA oxidative 
stress.

Vitamin C: A protective effect of vitamin C supplementation 
in human with plasma levels>50μmol/l was observed by Sram, et al. 
(2012) [73] in terms of 8-oxodG levels. Similarly, in an earlier study, 
Kadirvel, et al. (2007) [74] reported that supplementation with ascorbic 
acid significantly prevents the arsenic-induced protein oxidation 
and DNA damage in rats. More recently, Kontek, et al. (2013) [75] 
noted that vitamin C (in a concentration range 10-100 μm) caused 
a clear protecting effect against DNA damaging. More specifically, 
they concluded that vitamin C modulates DNA damage induced by 
hydrogen peroxide in human colorectal adenocarcinoma cell lines 
(HT29), estimated by COMET assay in vitro (decrease ∼ 30%). Asgard 
(2014) [71] reported that high plasma levels of ascorbate reduced the 
levels of oxidative DNA damage (8- oxodG) in mononuclear white 
blood cells. Overall, Konopacka (2004) [76] highlighted that data 
concerning the influence of vitamin C on oxidative DNA damage are 
conflicting and some of the discrepancies can be explained by the 
different experimental methodologies employed. 

(b) Effect of vitamins in antioxidant mixtures: In an earlier study, 
Sweetman, et al. 1997 [77] had examined the effect of antioxidant vitamin 
supplementation on DNA damage and repair in human lymphoblastoid 
cells. After 24-hour supplementation period with a mixture ascorbic 
acid + alpha-tocopherol, (60 microM in total) the level of endogenous 
DNA damage was significantly lower than in the nonsupplemented 
culture, as assessed by the comet assay. In addition, a human clinical 
trial [78] by Duthie, et al. (1997) reported that supplementation of 
smokers and non-smokers with an antioxidant mixture (vitamin C-100 
mg +vitamin E-280 mg +and β-carotene-25 mg per day) significantly 
(p<0.002) reduced base damage in lymphocyte DNA. These findings 

agree with another human trial [79] where the researchers conducted 
a dietary intervention trial with 23 healthy subjects (after 2 weeks of 
washout) supplemented daily with 40 mg lycopene (weeks 3 and 4), 
22.3 mg β-carotene and 15.7 mg α-carotene (weeks 5 and 6), and 11.3 
mg lutein (weeks 7 and 8) resulting into significantly decreased DNA 
damage in lymphocytes. Kiokias & Gordon (2003) [27] conducted a 
double-blind, placebo-controlled cross over study with 30 healthy 
subjects. Following a dietary supplementation of  30 mg carotenoid 
mixture /day (α,β-carotene, lycopene, paprika, lutein, bixin, total 
amount) they reported a significant effect against  production of urinary 
8-OHdG estimated by use of  ELISA test. 

More recently, Cocate, et al. (2015) [63] conducted a cross-sectional 
study with the participation of 296 apparently healthy middle-aged 
men to assess the potential relationships of carotenoid intake with lipid 
and oxidative stress markers. 

In conclusion, the total daily carotenoid intake based on five 
investigated carotenoid types (β-cryptoxanthin, lycopene, lutein plus 
zeaxanthin, β-carotene and α-carotene) was inversely associated with the 
production of urinary 8-OH-dG as oxidative stress biomarker (p<0.05). 
On the contrary, Asgard (2014) [72] reported that supplementation of 
47 type-2 diabetes subjects for 12 weeks with 16 capsules/day (mixture 
of β-carotene and α-tocopherol) did not exert any inhibitory effect 
against DNA oxidative stress.

An overview on the human trial that investigated into antioxidant 
effects of vitamins combinations against LDL and/or DNA oxidative 
changes is given in (Table 2).

Conclusion/future work in this scientific field 
The review of the earlier indicated studies on oxidative stress and 

effect of antioxidant vitamins has led to the following conclusions in the 
frame of the current analysis: 

(a) Relatively low levels of LDL enrichment in provitamin A (<30 
mg/day) can exert a better protective effect against oxidation of 
LDL ex vivo than higher doses of carotenoid supplements (60-
100 mg of carotenoids/day) that fail to present any activity.  An 

Authors/studies
(listed in date order)

Condition of Human 
Clinical trials Protective (or not)  effect of the vitamin mixture

Effect against LDL oxidation Effect against DNA damage

Duthie, et al. (1997) [78]  

Supplementation of smokers and non-smokers 
with an antioxidant mixture (vitamin C-100 mg 
+vitamin E-280 mg +and β-carotene-25 mg per 
day)

---------- Significantly (p<0.002) reduced 
base damage in lymphocyte DNA.

Kiokias & Gordon (2003) 
[27] 

30 healthy volunteers were supplemented for 3 
weeks with a mixture of 30 mg active carotenoid/
day containing palm oil carotenes, lycopene, 
paprika, lutein, bixin).

A reduction of ex vivo LDL             oxidative 
modification (monitored 
by conjugated dienes at 233 nm

A reduction of in vivo oxidative
DNA damage by measuring 
8-OHDG adduct (ELISA method) 

Astley, et al. (2004) [68] 

Healthy males were supplemented with 15 mg/d 
of lutein, β-carotene or lycopene (natural isolate 
capsules) for 4 weeks (3 independent clinical 
trials)

---------- Carotenoids presented an antioxidant character by 
scavenging DNA-damaging free radicals 

Boushehri, et al. (2012) 
[64] 

Male subjects followed a diet enriched with a 
combination of vitamin C (500 mg), vitamin E 
(400 IU), ß-carotene (15 mg),

The antioxidant treatment resulted 
into significantly lower
serum oxidized LDL levels.

----------

Asgard (2014)
[72] 

47 type-2 diabetes subjects supplemented for 
12 weeks with 16 capsules/day (mixture of 
β-carotene + α-tocopherol)  

----------
Dietary supplementation did not significantly reduce 
biomarkers of oxidative stress despite the substantial 
increased of plasma vitamin concentrations 

Cocate, et al. (2015)
[63] 

296 healthy middle-aged subjects were 
supplemented with a carotenoid mixture 
(β-cryptoxanthin, lycopene, lutein plus 
zeaxanthin, β-carotene and α-carotene).

The carotenoid supplementation resulted into 
reduced  plasma oxidised-LDL concentrations. 
(p<0.05) 

----------

Table 2. Selection of human clinical trials designed to examine the effect of dietary supplementation with vitamins mixtures against LDL and/or DNA oxidative changes (current 
analysis).
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explanation for this is that a dietary intervention resulting in high 
carotenoid enrichments may have excessively loaded LDL particles 
with carotene autoxidation metabolites that can generate reactive 
oxygen species (leading thereby to increased LDL oxidative 
susceptibility rather than to any protection effect). 

(b) A recent body of clinical research evidence has concluded that 
dietary combination of vitamins (e.g. vitamin E and vitamin C) 
can be more effective against oxidative damage of either LDL or 
DNA than the supplementation of each individual vitamin. Such 
an enhanced effect of vitamins mixtures may relate to the different 
mode of activities of the individual compounds thereby allowing 
a synergistic effect when combined in the diet. In particular for 
carotenoids, a better antioxidant effect against oxidative damage 
has been reported when provitamin A compounds (mainy 
hydrophobic α- and β-carotene) are suppslemented together with 
preparations of more polar xanthopylls (e.g. lutein or paprika) in 
recent human clinical studies.

(c) The association between plasma oxidized LDL and DNA oxidative 
adducts with the eventual risk of developing a cardiovascular 
disease or cancer respectively are not completely elucidated yet.  
Further investigation is required in this filed to obtain more 
recent and valid clinical intervention data further to the existing 
epidemiological data. The development of optimal nutritional and 
future health strategies would certainly be facilitated by further 
investigation into the clinical effects of combined vitamins dietary 
supplementation against oxidative pathological conditions.
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