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Abstract
Metabolic fluxes between mitochondria and endoplasmic reticulum appear today of first importance in normal and pathologic cellular physiology sustaining important 
regulation processes involved in mitochondrial biogenesis, homeostasis and stress responses. The basis of these interrelations is well described in yeast, the mechanism 
involved in higher eukaryotes and mammals is unknown. Here will be to present and emphasize on the role of a newly discovered protein, ATAD3, that may 
represent a molecular bridge between these compartments and essential link for associated exchanging processes.
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Introduction
Mitochondria appeared in early eukaryotes, allowing thus a great 

multiplication of the cellular energetic power and opening gates to 
higher eukaryotes evolution [1].

Until human, mitochondria improved in their architecture, 
specificity (associated to cell differentiation), regulation pathways, 
biogenesis, renewal and elimination processes (mitophagy). All these 
progresses have allowed, step by step, a much better and sophisticated 
production and use of this main cellular energy source. To improve 
cellular efficiency, which depends on energy supply, it was needed 
to ameliorate mitochondria functioning and specification, as good 
examples with neurones (and synaptic mitochondria), muscles, 
spermatozoids or oocytes. More in details, mitochondria are responsible, 
in addition to their main ATP-producing function, of several other 
processes involved in diverse cellular functions. Mitochondria are 
thus essential for (i) lipogenesis, and reversely for beta-oxidation, (ii) 
membrane biogenesis and plasticity (like in producing phosphatidyl-
choline for plasma membrane, or sphingosine for myelinisation), (iii) 
steroids synthesis (especially in gonads or cortico-surrenal glands) 
and of course in (iiii) apoptosis processes, calcium homeostasis and 
signalization. Therefore, all the different mitochondrial activities are 
fully integrated to the whole cellular metabolism. This integration 
takes place especially through functional interactions with the main 
mitochondria partner which is the endoplasmic reticulum (ER) [2-5]. 
Indeed, mitochondrial biogenesis regulation is essentially supported by 
to the tight metabolic relations with the ER compartment, as well as 
their morphology, the produced reactive oxygen species, autophagy, 
apoptotic processes and calcium homeostasis [6,7]. These tight 
molecular connections between ER and mitochondria involve the 
MAM (Mitochondrial Associated Membranes) from one side and 
specific anchoring systems from mitochondrial side. Mitochondrial 
functions are therefore closely linked to their intercommunication with 
the ER, in both senses, showing how ER and mitochondria depend of 
each other and how a miss connection will impact both mitochondria 
and ER physiology [8-11]. These interactions are therefore involved 

in mitochondrial biogenesis and mitochondrial mass regulation 
according to the cell physiology and fate, like along tissue regeneration 
and aging processes.

Because of the main roles of mitochondria in cellular metabolism, 
mitochondrial dysfunctions can be responsible of very diverse diseases, 
severe and even rare, that can affect all organs. Therefore, it comes 
easy to understand how Endoplasmic Reticulum (ER)-mitochondria 
interactions can be potentially involved in certain pathologies. As 
central actors of cellular metabolism, the deficient physiology of 
mitochondria consecutively initiates various and numerous pathologies 
including neuropathies, myopathies like cardiopathies and ataxia, 
diabetes and cancers. Involved also in steroidogenesis, mitochondrial 
miss of function can also cause hormonal disorders and sterility. Then, 
any disorders in ER-M interactions may cause mitochondrial defects 
and related pathologies.

Neuropathies and ER-M contact sites
Mitochondria are of course the main cellular source of ATP, 

produced by the coupled activities of the Krebs cycle, the respiration 
chain and the F1F0 ATP synthase. Also, mitochondria are the site 
for de novo lipid synthesis, from Krebs cycle’s citrate and Acetyl 
CoA “leakage” and lipid storage, as for lipid consumption by the 
β-oxidation. Mitochondria are therefore the crosstalk centre for 
bioenergetic regulations. For this reason, and because of their role 
in lipid metabolism, any mitochondrial miss function may have a 
direct impact on cell capacity to ensure their functions. Then it is not 
surprising to discover that many pathologies like myo- and neuro-
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pathies are mitochondria-linked and involve ER-M interaction defects 
[7,12]. 

A significant disease, of modern times, Alzeimer disease, involves 
demyelination and degeneration of hippocampal and cortical neurons 
associated with intracellular accumulation of phosphorylated Tau and 
extracellular accumulation of β-amyloid peptides. The genetic causes 
can be either mutations of the precursor protein or of Presenilin which 
is involved in the processing of amyloid peptides and is enriched at 
ER-M contact sites [13]. In both patients and animal models, an increase 
of ER-M contacts was observed, associated with increase calcium flux 
and phospholipid biosynthesis [14,15]. Among the several hypothesis 
attempting to explain the pathogenesis, mitochondria dysfunctions 
have been shown recently to induce activation of sphingomyelinase, 
by oxidative stress and H2O2 over-production, provoking there and 
consecutively a demyelination process [16]. However, other hypothesis 
also exists to explain how and why ER-M contact sites and mitochondrial 
activities can be involved in the disease, but defective or abnormal ER-M 
interrelations can be clearly a cause for the disease [12].

Similarly, Parkinson disease, which is characterized by the 
degeneration of dopaminergic neurons, involves modifications of 
ER-M contact sites, implicating α-synuclein, DJ-1, Parkin, Mfn2 and 
PINK [17-20], and implying also BECN1 during mitophagy [21]. 
α-synuclein is found abundant at ER-M contact sites and its mutation 
induces a parkinsonism associated to decreased ER-M contact sites 
and of phospholipid synthesis. Parkin mutations are the main cause 
for Parkinson disease as Parkin, as PINK and BECN1 which are 
involved in mitophagy as well as in mitochondrial biogenesis, fission 
and transport. All these processes occur at ER-M contact sites. Indeed, 
increased contacts were observed in fibroblasts from patient with 
Parkin mutations so we can guess how much the disturbance of these 
sites could be linked to Parkinson disease [22,23].

Similarly, ER-M dysfunctions are also revealed in Amyotrophic 
lateral schlerosis and Huntington disease as in neuroinflammation 
[7,12]. As another example of ER-M dysfunction in neuropathies is 
a more recent case report on SERAC1 mutation related to MEGDEL 
syndrome [24,25]. This lipase-domain containing protein localizes at 
ER-M contact sites and may act by remodelling phosphatidylglycerol.

Finally, the best-case study to point again the importance of ER-M 
contacts in neuronal pathophysiology is MFN2 (Mitofusine 2). This 
mitochondrial protein involved in ER-M tethering is, under mutated 
form, responsible of the Charcot-Marie-Tooth neuropathic disease type 
2A [26]. MFN2 contributes mainly in ER-M contact sites by creating 
a GTPase-dependent structure involving coiled-coil domain and 
supra-structure oligomerization that are implicated in mitochondrial 
fusion and ER-M interaction. Mutations in the GTPase, coiled-coil or 
conserved R3 domains induce severe neuropathies.

Mitochondria are also organelles involved in lipid and phospholipid 
synthesis like for cardiolipin, phosphatidyl Ethanolamine, phosphatidyl 
Serine, phosphatidyl Choline as for sphingomyelin synthesis, and 
for that, the ER is providing the required lipid precursors to the 
mitochondria [27-29]. The ER provides also mitochondria with 
glycosphingolipids for which the transfer may occurs also at MAM 
[30]. Therefore, any disturbance in the lipid fluxes between ER and 
mitochondria may have an important effect on lipid constitution/
equilibrium within the cell and the mitochondria and may impact 
drastically mitochondrial and cell activities. Concerning glial cells, 
a deficient lipid metabolism of mitochondria may contribute also 
in demyelination diseases or other unclassified neuropathies like in 
disease involving membrane dysfunction.

Myopathies and ER-M contact sites
As other high energy consuming organs, the muscles, heart and 

skeletal muscles, can also suffer intensively from mitochondrial miss-
functions. Therefore, improper ER-M contact sites in muscles could be 
the cause of certain myopathies.

During muscle contraction, the ryanodine receptor permits 
the transfer of calcium from the ER (sarcoplasmic reticulum) to the 
mitochondria, to increase ATP production. The ryanodine receptor 
is also involved during muscle differentiation. Therefore, it is not 
surprising that disturbed ryanodine receptor functioning is related to 
myopathies.  Indeed, ryanodine receptor mutation were observed in 
patients with central core disease and malignant hyperthermia [31,32]. 
Theses mutations induce alteration of calcium signalling and damaged 
mitochondria.

Calcium regulation is also modified in many muscular dystrophies 
[33]. As mitochondria play a significant role in calcium signalling and 
balancing, by an interplay with the endoplasmic reticulum involving 
the MAM [34], it is not so surprising to observe that a mutation of a 
regulator for the mitochondrial calcium uniporter induces pathological 
features like mitochondrial myopathies [35]. Then, targeting ER-M 
contact sites related to calcium balancing may be a solution to improve 
muscle function of patients [33,36].

We guess that other muscular diseases will be found to reside in 
a miss functioning of ER-M contact sites but since this research area 
is still new, cause-effect relations between ER-M dysfunction and 
myopathies are still under investigations. 

If we do not know today if these regulations are the cause or the 
consequence of the associated diseases, ER-M contact sites seem 
however to be of first importance in different and various neurological 
and muscle disorders.

Obesity, diabetes, hepatic diseases and ER-M contact sites
ER-M contact sites have been shown to be modulated by diets or 

nutritional transitions [37], and especially in the liver [38], and they 
are considered today as metabolic sensor site. Adaptations may occur 
during the switch between glucose oxidation and lipid oxidation, 
which depends of nutrition. Therefore, it is not surprising to observe 
that ER-M sites react to nutrition signals by the action of ER-stress 
system [39].

Therefore, metabolic diseases are also linked to mitochondrial 
activities and therefore to ER-M contact sites status. Obesity and 
diabetes have been also shown to involve ER-M contact sites regulations 
[40-42], and ER-stress activations were observed in several models for 
obesity and diabetes as well as in humans, and in different organs like 
the liver, the adipose tissue and skeletal muscle [43-45]. Reorganization 
of ER-M contact sites was correlated there with mitochondrial calcium 
overload, reduced oxidative capacities and increased oxidative stress. 
Also, molecules reducing ER-stress ameliorate the physiology of obese 
mice and humans [46,47]. The same observations were made in liver, 
in alcoholic and non-alcoholic diseases where ER-M contact sites are 
regulated and where active molecules can also modulate ER-M contact 
sites and produce beneficial effects [38].

Sterility and ER-M contact sites
Mitochondria are also main actors in steroidogenesis [48,49]. This 

role is first based on ER-M contact sites that promotes a cholesterol 
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flux between ER and mitochondria where steroidogenesis takes 
place [50]. The transport of cholesterol is the rate-limiting step of 
steroidogenesis. It was demonstrated that the cholesterol transport 
activity, which depends of protein synthesis, is ensured by the protein 
StAR (steroidogenic acute regulatory protein), at ER-M contact sites, 
and that hormonal stimulation promotes both the cholesterol transport 
and the number of contacts [51]. StAR localizes in mitochondria, at 
the outer mitochondrial membrane and is associated to partner in the 
inner mitochondrial membrane and matrix protein [50].  Mutation in 
StAR gene cause congenital lipoid adrenal hyperplasia [52], a disease 
characterized by defective steroidogenesis. Mutations in any of the 
proteins involved in the cholesterol transport process may have a 
strong impact in steroid production, like for testosterone production 
and might induce therefore reduced fertility.

Cancer and ER-M contact sites
Many cancers are associated with increased cholesterol flux 

and ER-M contact sites. A one marker of breast cancer is TSPO 
(Translocator Protein), which belong to the cholesterol transport 
complex [53]. In other cancers, involving PML-driven malignant 
transformation, it has been observed that PML (promyelocytic 
leukaemia) partially localizes to ER-M contact site [54] and modulates 
Akt-dependent IP3R phosphorylation by the action of phosphatase 2A. 
The phosphorylation state of IP3R determines the amount of calcium 
driven from ER to mitochondria and is involved in apoptotic processes.

PTEN is another oncogene that can modulate Akt/IP3R signalling 
at the ER-M contact sites and that links cancer development and ER-M 
status [55]. Indeed, mTORC2 can localize to ER-M contact sites in 
growth factor stimulated cells in order to sense nutrient availability 
and metabolism. There, mTOTRC2 promotes the interaction between 
Grp75 and IP3R, regulates ATP production and is associated with 
increased phosphorylation of IP3R by Akt.

The famous tumour-suppressor protein p53 has also been reported 
to localize at ER-M contact sites and influence calcium signalling 
during cell stress [56]. Since most cancers have one or two mutated 
p53, which induce resistance to treatments, overexpression of SERCA 
or MCU can overcome this phenotype and sensitize the tumour cells 
to treatments [57].

Another example of improper ER-M contact sites involvement in 
cancer is the case study of Bcl-2. It has been shown recently that Bcl-
2 inhibitor (ABT737) reverses cisplatin resistance by regulating ER-M 
calcium signalling [58]. Indeed, ABT737 treatment of ovarian cancer 
cells increases ER-M contact sites and increases cisplatin induced 
apoptosis. ER-M contact sites appears therefore as targets for anti-
cancer therapy.

Mfn2 is also a cancer-associated gene. If overexpression of Mfn2 
have been related to poor prognostic in gastric cancer [59], experiments 
have proved that Mfn2 presents tumour suppressor activity [60]. Both 
results are not contradictive, as Mfn2 overexpression in cancer can be 
of a mutated form, like for p53 in many tumour types.

Finally, TpM (trichioplein/mitostatin), a cytoskeleton binding 
protein under expressed in breast, prostate and bladder cancers was 
shown to play a role at ER-M contact sites and calcium signalling by 
interacting with MFN2 [61].

To conclude about ER-M contact sites and pathogenesis is to add 
finally that Ischemy-reperfusion contexts also implicate ER-M contact 
sites regulation, and molecules that can decrease ER-M contacts at 

reperfusion can protect cardiomyocytes against injuries and improve 
the success of heart vessels surgeries [62].

In yeast, the molecular organization of ER-M contact sites are 
today well described and called ERMES [5,9]. They involve Mdm1 
Mdm10 Mdm12 Mdm34 and Mdm32.

However, in higher eukaryotes, where cholesterol takes place 
rather than ergosterol in yeast, and where mitochondrial mobility 
becomes tubulin-based, the protein complex involved in contact sites is 
still not known precisely but may involve a recently discovered protein, 
ATAD3 (ATPase family AAA Domain-containing protein 3).

ATAD3 and ER-M contact sites
The “mitochondrial mass” and its regulation is today a new concept 

in Cell Biology, Physiology and Medicine, and we are now considering 
that the mitochondrial “patrimoine” is a highly dynamic system that 
evolve all lifelong. Also, these regulations involve necessarily ER-M 
contact sites. 

In higher eukaryotes, mitochondria can adapt, or not, at short, 
mid and long terms. Short terms adaptations are linked to short term 
signalizations, like post-translational regulations, while mid and long 
terms regulations concern translational and transcriptional levels. 
Increased feeding for example, or increased brain and muscular 
activities will induce mitochondrial biogenesis, mitochondrial mass 
increase, and this occurs at different regulation level and all along 
cell and body lives. At birth for example, the mitochondrial mass is 
developing a lot with breathing start, and thereafter at all phases and 
places involving cellular proliferation and differentiation (as the specific 
mitochondrial proteomic “editing” that occurs upon differentiation).

At the opposite, pathologies, aging, inactivity or nutritional 
starvation involved a general stress-response process that will lead to 
mitochondrial mass reduction and mitophagy.

The endoplasmic reticulum is in fact the first and major “associate” 
for the mitochondrial biogenesis. The ER provides mitochondria with 
several essential biomolecules like phosphatidyl-serine, cholesterol, 
phosphatidic acid, calcium, iron, zinc, amino-acids and probably 
nuclear tRNA and neo-synthesised, nuclear-encoded proteins [8,29,63]. 
Today we believe therefore that ER-M contact sites, via cholesterol raft 
and imported proteins system are crucial for mitochondrial biogenesis/
renewal [27].

The newly identified ATAD3 might be a mark of this steps for 
mitochondrial mass adaptation and ER-M interactions improvements 
along evolution.

ATAD3 is encoded by an immediate vital gene, necessary for 
development as soon as embryonic implantation stage [64], when 
the embryo starts to produce its “own”, zygotic, mitochondria for 
first time. Along evolution, ATAD3 appears after yeast, in higher and 
pluricellular eukaryotic organisms, notably when cholesterol starts to 
take a place in membrane constitution and metabolism.

ATAD3 is an ATPase located in the inner mitochondrial membrane 
and is fully ubiquitous [65-67]. Then, its role can be important, 
essential, in all organs. Even if inserted through the inner mitochondrial 
membrane, ATAD3 is however suspected to interact with the outer 
membrane too, as even with endoplasmic reticulum-located partners. 
In more details ATAD3 has been shown to interact molecularly with 
Mfn2 and Drp1 [68], and functionally, as Drp1 and ATAD3 work in 
concert to drive mitochondrial biogenesis and fragmentation [69,70]. 
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Also, ATAD3 interacts with WASF3 and GRP78 and this interaction 
may be involved during cancerogenesis [71]. Having its ATPase 
domain in the matrix [72], ATAD3 can constitute a bioenergetic sensor 
able to create a physical link-docking with the ER depending of ATP 
synthesis [65,69]. ATAD3 is also involved in stress-responses [71] and 
since ATAD3 interacts with S100B in a calcium-dependent manner, 
ATAD3 is also concerned by calcium signalling and regulation [69].

ATAD3 gene appeared as a single gene in pluricellular organisms, 
until rodents. In primates surprisingly, two others homologous genes 
appeared, probably by duplication. The three ATAD3 genes, called 
therefore ATAD3A, B and C (where ATAD3A is the ancestral form 
of ATAD3 gene), present significant molecular differences (especially 
ATAD3C that does not possess large N- and C-terminal part) [73]. 
ATAD3A and ATAD3B were only studied yet, and the functional and 
molecular differences between both is especially the relative abundance 
and the tissue-specific expression differences. ATAD3A is expressed in 
all organs studied until now, and is expressed all life long, in embryo 
and adult. ATAD3B itself is expressed specifically in embryonic cells, 
in adult pituitary gland, and notably in tumours [74,67,73]. These 
differences are related to gene promoter particularities. Also, other 
shorter isoforms, produced by alternative splicing and translation, 
present specific patterns of expression [73]. 

Other differences between ATAD3A and ATAD3B are related to 
their phosphorylation sites and membrane structural insertion, but 
none of these particularities have today been explained [75].

If the precise function of ATAD3 is still not known today, the 
sure is that its expression level monitors mitochondrial biogenesis, as 
to be vital at very early stages of animal development. The first work 
concluding this is the ATAD3 Knock Down in D. melanogaster and C. 
elegans [76,77] and the ATAD3 Knock Out in mouse [64]. 

In C. elegans, ATAD3-siRNA-based K.D. induces an arrest in the 
development, at L1 larvae stage. Indeed, the ATAD3 K.D. larva fed 
themselves normally but failed to accumulate lipids in their adipocyte-
like intestinal tissue. The authors showed indeed that the pre-required 
mitochondrial biogenesis does not occur efficiently in these cells, 
avoiding proper lipids storage [77]. 

In mouse, more recently, it has been shown that ATAD3 K.O. 
induces an early arrest of embryo development, at day 4 [64]. ATAD3-
/- early embryos appeared unable to develop their trophoblast and 
to implant onto the uterine mucosa. This phase corresponds to the 
first zygotic mitochondrial biogenesis. Even if ATAD3 is vital, the 
ATAD3+/- mice are viable under conventional breeding and did not 
show evident signs for any deficiencies. However, we may believe that 
allelic compensation may not function in all the situations and that 
haplo-insufficiencies could be revealed. 

The most recent studies have lightened up a new and very 
interesting hypothesis developed by Papadopoulos and colleagues and 
deeply analysed [78-80]. They observed that ATAD3 may function as 
a part of a cholesterol-transporter, transferring cholesterol from the 
endoplasmic reticulum into the mitochondria, especially to provide 
lipids for mitochondrial-based steroids synthesis. We hypothesize 
ourselves that ATAD3 can contribute to drive the import of some 
nuclear-encoded mitochondrial proteins [70]. In fact, both hypotheses 
can fit and be joined together since we believe that RE exports (lipids 
and proteins), which support mitochondrial biogenesis, could occur as 
lipid-raft systems [81,27,80]. 

Whatever hypothesis, we are today at a time to be certain that 
ATAD3 insures a major function in mitochondrial biogenesis like in 

correct proliferation and differentiation, by its contribution to ER-M 
contact sites and related transfers. 

As a strong demonstration for this, recent studies have highlighted 
the major role of ATAD3 and the impact of its miss of function. Indeed, 
single or bi-allelic ATAD3 mutation or deletion have been reported 
this and last years to induce dramatic neuro- and myopathies.

ATAD3 and myopathies/neuropathies
As expected, researches from the last two years highlighted this 

important role of ATAD3 in mitochondrial status and pathogenesis. 
Three important studies have described that ATAD3A/B mutations are 
associated with severe neuro-myopathies in humans [82-84]. Lupski’s 
team identified a recurrent de novo ATAD3A mutation in few unrelated 
individuals with a phenotype of developmental delay, hypotonia, optic 
atrophy, axonal neuropathy, and hypertrophic cardiomyopathy, as 
seen with MFN2, OPA1, DNM1L and STAT2 mutations [84]. They 
described two families with biallelic mutations of ATAD3A and biallelic 
deletions issued from a nonallelic homologous recombination between 
ATAD3A and ATAD3B and ATAD3C. They found that these mutations 
induce in drosophila a dramatic decrease of mitochondrial mass, a 
modified mitochondrial morphology and an increased autophagy. 
Fibroblasts from patient exhibited also increased mitophagy. The same 
team reported these years a new set of pathological cases that links 
again ATAD3 mutations and other diseases for which no molecular 
diagnosis has been yet achieved as a clinical genomic diagnosis [82]. 
The team of H. Tyynismaa also described and linked ATAD3 mutations 
to myopathies as spastic paraplegia [83]. They identified a dominantly 
inherited heterozygous mutation in ATAD3A in an individual with 
hereditary spastic paraplegia and axonal neuropathy and his children 
with dyskinetic cerebral palsy, both diseases installed in childhood. 
They also showed that overexpression of the mutant ATAD3A induces 
fragmentation of the mitochondrial network in patient fibroblasts 
and neurons derived from their pluripotent stem cells. Mutations in 
ATAD3A is observed here also to be dominantly inherited. Also, more 
recently, a third study elucidated the genetic basis of cerebellar atrophy 
linked to ATAD3A/B deletion [85], stressing how much ATAD3 
mutation can be deleterious.

In all case studies, the mutation affects the Walker A motif, 
responsible for ATP binding in the AAA module of ATAD3A. This 
mutation is believed to act as a dominant-negative because ATAD3 
proteins may function as hexamers and mutant can compete negatively 
in the constitution of fully active polymers.

ATAD3A variations/mutations represent therefore an additional 
link between mitochondrial dynamics and recognizable neurological 
and muscular syndromes, as expected. This finding extends therefore 
the group of mitochondrial inner membrane AAA proteins associated 
with spasticity.

ATAD3 and Sterility
Since ATAD3 is involved in ER-M contact sites and cholesterol 

transport, it is not surprising to find that ATAD3 controls steroids 
production in adrenocortical and Leydig cells [79,78]. Therefore, is to 
hypothesize that ATAD3 miss function/mutation can be the cause of certain 
infertility in males and females. Investigation of ATAD3 status in patient 
suffering of infecundity could be an interesting program of research.

ATAD3 and cancer
More importantly is the involvement of ATAD3 in cancer 

occurrence and development. Indeed, ATAD3 studies started with the 
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observation of its overexpression in cancer [86] and that ATAD3 gene 
is a target gene of c-MYC [87]. This observation has been made in head 
and neck cancers, as in lung, uterine, glial, prostate and breast cancers 
[74,88-90]. Furthermore, ATAD3A/B expression correlates with 
chemoresistance and radioresistance of the tumours [74,91,92] as well 
as in metastasis activities through molecular interaction with GRP78 
and modulation of WASF3 function [71]. Moreover, diminishing 
ATAD3A/B expression levels induces reversion of the transformed 
phenotype of glioma in vitro [74]. Therefore, decreasing ATAD3 
activity is definitively a pertinent target for reversion of transformed 
phenotypes and limitation of tumour growth and invasion. Also, 
ATAD3 expression level detection on biopsies is a potential indicator 
for tumour classification and prognosis at hospital [75].

Before to conclude is to add, as we have seen before, that ER-M 
miss-regulations are involved in metabolic diseases like obesity, 
diabetes, or in fertility. It is therefore very attractive to see if any of 
these diseases can be cause by ATAD3 miss of function.

Conclusion
Along evolution, mitochondria physiology improved, and 

especially regarding the tight and important relation with the ER that 
became more and more complex and regulated. 

Indeed, ER-M contact sites may support a coupled functioning 
between mtDNA control (replication/transcription/translation), 
translation and import of nuclear-encoded mitochondrial proteins, 
lipid fluxes and bioenergetic level.  Therefore, an involvement of 
ATAD3 as a new importing raft system might be a good hypothetical 
model that could explain and support all these mechanisms.
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