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Abstract
Amyotrophic lateral sclerosis (ALS), a systems neurodegeneration of adults, is typically progressive, fatal, and arises from death of lower and upper motorneurons 
(MN’s). We carried out RNA sequencing (RNA-seq) from cervical spinal cord MN’s isolated with laser capture microdissection (LCM) from ALS (n=4) and CTL 
(n=6) subjects. Cufflinks estimation of FPKM values (fragments per kilobase of exon per million reads), identified 3868 genes where the minimal mean FPKM was 
2.0 in both groups. “Biologically blind” plots showed gene expression in ALS MN’s was increased 2 to 7-fold compared to CTL MN gene expression. Comparison of 
gene expression between ALS MN’s and CTL MN’s using false discovery rate (FDR) correction identified 263 genes increased in ALS with FDR<0.1. “Biologically 
smart” DAVID analyses revealed significant Gene Ontology (GO) groupings into vacuolar ATPase families. “Biologically blind” 3-D visualized gene expression 
networks (Miru) showed separation into ALS and CTL MN networks. ALS consistently increases expression several fold in MN genes that significantly segregate 
into vacuolar ATPase families, implying increased recycling of cellular components in ALS MN’s. (172 words).
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Introduction
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and 

usually fatal (in the absence of artificial ventilation) adult systems 
neurodegeneration that arises from premature, accelerated death of 
lower motor neurons (MN’s) in brainstem and spinal cord and upper 
MN’s in motor cortex [1]. The typical ALS sufferer develops muscle 
cramps, weakness, spasticity and muscle atrophy, complicated by 
dysphagia and ventilator insufficiency. Unless artificial ventilation is 
undertaken, death usually occurs 2-5 years after symptom onset. 

A minority (~5-10%) of ALS occurs in families (fALS; [2]) 
and appears to arise from mutations in one of a group of at least 14 
seemingly unrelated genes. The most studied of these fALS genes is 
SOD1 (superoxide dismutase-1, aka CuZn SOD, aka cytosolic SOD), 
with over 100 causal mutations known. The most frequently occurring 
mutated fALS gene is a hexanucleotide repeat in the promoter or 
first exon of orf72, located on Chromosome 9, thus C9orf72 [1,3-8]. 
Mutations in C9orf72 are frequently associated with fronto-temporal 
dementia and are found in ~40% of fALS and up to 11% of sporadic 
ALS (sALS).

The cause(s) of sALS are unclear. Multiple cellular abnormalities 
have been described in sALS tissues, including increased oxidative stress 
damage, increased inflammatory signaling, depressed mitochondrial 
OXPHOS activity and calcium signaling, altered autophagy, abnormal 
accumulation of aggregated (presumably damaged) proteins, and 
increased activation of cell death signaling [5,9-35]. It is not known if 
most sALS arise from a single “genesis” event that leads to multiple 
cell biological deficits, or whether there are multiple different molecular 
genesis causes of sALS across individuals.

Examination of postmortem ALS tissues may provide insights 
into ALS etiologies. In a recent RNA-sequencing study of ALS 
cervical spinal cord sections [36], we described an apparent increase 
in neuroinflammation signaling involving tumor necrosis factor-alpha 
(TNF-α) as a major upstream regulator. Because whole spinal cord is 
mostly astrocytes, it was unclear what gene expression changes occur in 
motor neurons that are selectively vulnerable in ALS. In that context, it 
was of interest that pharmacological inhibition of microglial activation 
altered the course of ALS in a transgenic mouse model [37].

In the present study we used laser capture microdissection (LCM) 
to isolate cervical spinal cord MN’s in both ALS and CTL samples. In 
a prior publication we showed that qPCR of mtDNA-encoded genes 
in LCM-captured MN’s revealed loss of respiratory (OXPHOS) gene 
expression [38]. In the present study, from RNA-seq we identified 
significantly expressed nuclear genome encoded genes with a false-
discovery rate (FDR) correction approach for multiple comparisons. 
We found 263 genes significantly overexpressed in ALS MN’s that were 
in Gene Ontology (GO) families significantly representing vacuolar 
ATPase. We also found 2 to 7-fold higher gene expression in ALS 
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MN’s and separate gene expression networks between ALS and CTL 
MN’s.

Our findings suggest that by the time a subject dies from ALS, there 
appears to be increased recycling of intracellular components using 
the proton pumping vacuolar ATPase system. We also found gene 
expression evidence suggesting autophagy activation and epithelial-
mesenchymal transition (EMT) in ALS MN’s, which if confirmed, 
would represent the first description of this phenomenon (EMT) in 
adult, non-neoplastic, central nervous tissues.

Results
Supplemental Table 1 shows the demographics and characteristics 

of the ALS and CTL samples reported in this study. Note that 
between 614-1319 individual neurons were collected by laser-
capture microdissection (LCM) from each sample for this study. 
We have previously reported that these LCM-isolated cervical spinal 
motorneurons had substantially increased neuronal and reduced 
glial markers, compared to whole cervical spinal cord, and showed 
significant expression of choline acetyl transferase, the enzyme 
responsible for synthesis of acetylcholine, the major transmitter used 
by motor neurons [38].

Supplemental Table 2 shows expression of all genes (minus 
duplicates) we found in our Cufflinks-based analysis of RNA-seq data 
from LCM-isolated MN’s in CTL and ALS cervical spinal cord samples. 
It also shows the ratios of mean FPKM of ALS/mean FPKM CTL.

We used several “biologically blind” or “biologically smart” systems 
biology approaches to our gene expression data of LCM-isolated MN’s 
from CTL and ALS spinal cords:

The first approach was a commonly used comparative statistical 
analysis of FPKM values in each group (t-test), with correction 
for multiple comparisons based on the false discovery rate (FDR) 
approach.  Using a FDR of <10% (q < 0.10), we found (Supplemental 
Table 3) 263 genes that were significantly (FDR<10%) overexpressed 
in ALS LCM MN. Table 1 shows the “biologically smart” DAVID 
((Database for  Annotation,  Visualization and  Integrated  Discovery; 
https://david.ncifcrf.gov/; version 6.8 (released Oct., 2016)) gene 
ontology (GO) family results from analysis of these genes, where we 
report only GO results with Benjamini-corrected p values of < 0.05. 
GO biological processes identified included multiple families that used 
vacuolar ATPase genes, one process involving axon outgrowth and one 
process involving microtubule stabilization. 

In all cases the genes in ALS MN’s were increased compared to 
those in CTL MN’s (Figure 1A). Those genes of the vacuolar ATPase 
family are separately plotted in Figure 1B. 

Second, we applied 3-D imaging of gene clusters; derived from 
Markov clustering of gene expression networks visualized using Miru 

(www.kajeka.com). The .csv files used for Miru input are provided 
in Supplemental Table 4 for CTL and ALS MN’s, Miru created 3-D 
networks from the 263 genes that were significantly (FDR < 0.1) 
overexpressed in ALS MN’s. Figure 2 shows the 3-D network created 
by Miru for the ALS and CTL MNs’ gene expressions. The CTL and 
ALS MN’s were segregated into two separate groups. The one exception 
was inclusion of one CTL (CTL6) with the ALS MN group.

Discussion
In spite of its rarity and status as an orphan disease, ALS is 

devastating for those who have it. ALS is a cause of rapidly progressing 

disability and a premature, cruel death by ventilator insufficiency. 
Other than rare, familial genetic variants, causes of ALS and disease-
altering therapies remain elusive. 

Disruption of virtually every major cell function has been 
implicated in ALS etiology (see above). In our prior work using gene 
expression as a proxy for cell activity, we reported that inflammation, 
and in particular that mediated by TNF-α, in our cervical spinal 
cord specimens appeared to be playing an etiologic role [36], but 
inflammation was not the only process we found to be disturbed. 

Figure 1. A. (top) Plots of ALS and CTL MN gene expression, where each sample was 
calculated as % of mean CTL FPKM, and means +/- SEM’s were plotted. B. (bottom) Bar 
chart plots of genes for vacuolar ATPase, plotted as means +/- SEM’s of % mean CTL 
values.

http://www.kajeka.com
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Annotation Cluster 1 Enrichment Score: 2.68
Category Term Genes Fold Enrichment Benjamini

GOTERM_BP_DIRECT GO:0090383~phagosome acidification ATP6V0C, ATP6V1C1, RAB7A, ATP6V0A1, ATP6V1G2, 
ATP6V1B2 15.0 0.020

GOTERM_BP_DIRECT GO:0015991~ATP hydrolysis coupled 
proton transport

ATP6V0C, ATP6V1C1, ATP6AP1, ATP1A3, ATP6V0A1, 
ATP6V1B2 12.7 0.036

GOTERM_BP_DIRECT GO:0008286~insulin receptor signaling 
pathway

ATP6V0C, ATP6V1C1, GRB2, ATP6AP1, RHOQ, ATP6V0A1, 
ATP6V1G2, ATP6V1B2 6.9 0.044

GOTERM_BP_DIRECT GO:0033572~transferrin transport ATP6V0C, ATP6V1C1, ATP6AP1, ATP6V0A1, ATP6V1G2, 
ATP6V1B2 11.6 0.037

GOTERM_MF_DIRECT GO:0046961~proton-transporting ATPase 
activity, rotational mechanism ATP6V0C, ATP6V1C1, ATP6AP1, ATP6V0A1, ATP6V1B2 13.3 0.030

Annotation Cluster 2 Enrichment Score: 2.47
Category Term Genes Fold Enrichment Benjamini
GOTERM_CC_DIRECT GO:0043194~axon initial segment NRCAM, ANK3, SCN8A, BIN1 26.4 0.009
Annotation Cluster 3 Enrichment Score: 2.23
Category Term Genes Fold Enrichment Benjamini

GOTERM_CC_DIRECT GO:0005875~microtubule associated 
complex KIF1B, MAPT, MAP1A, MAP2, MAP1B 10.7 0.022

Table 1. “Biologically smart” DAVID

Figure 2. Screenshot from MiruÒ 3D network construction of ALS and CTL MN gene 
expression, after Markov clustering, of FPKM values for 263 genes that were significantly 
altered (FDR<0.1).  Starting correlation coefficient was 0.9 (Pearson) and final clustering 
correlation coefficient was 0.95. Layout algorithm used was FMMM. Note that MiruÒ 
separated samples into two networks, one exclusively CTL (top), and one ALS (bottom) 
that had one CTL sample (CTL6).

In the present study we isolated with laser capture micro dissection 
between ~600 and ~1300 anterior motor neurons per sample from the 
ALS and CTL cervical spinal cord sections available to us. We then isolated 
total RNA from these motor neurons, amplified it and subjected it to RNA-
sequencing for an overview of all expressed genes. We used several systems 
biology approaches for analysis of this dataset that contained genes that 
were significantly altered (by FDR analysis) in ALS MN’s.

By using the publicly available DAVID [39,40] over-representation 
algorithm, we found that ALS motor neurons were significantly over-

represented in gene ontology families involving vacuolar ATPase 
function. 

Vacuolar ATPase (V-ATPase) is a 900 kDa multiple subunit, 
rotary ATPase complex that pump protons into multiple intracellular 
organelles [41,42]. Bafilomycin-A1, a V-ATPase inhibitor, induces 
an Atg-7 (autophagy protein)-dependent neuronal apoptosis [43], 
demonstrating one of the many important roles played by V-ATPase 
in the life of neurons. Although our observed increased expression in 
ALS MN’s of multiple autophagy genes and V-ATPase genes may be 
unrelated, it is tempting to speculate that one of the consequences in 
MN’s of ALS is increased autophagy.

Several autophagy-related genes were overexpressed in ALS MN’s. 
These included the autophagy-related proteins ATG1 (ALS/CTL=1.88); 
ATG13 (2.28); ATG2B (2.39); ATG3 (1.87); ATG9A (2.20); LAMP2 
(3.28); and MAP1LC3B (LC3B) (3.84). These findings suggest that 
autophagy function in the ALS MN’s is increased and are consistent 
with the DAVID results. 

Increased expression of LC3B has been noted in brainstems of 
G93A mutant SOD1 transgenic mice [44], and autophagy appears 
to be increased in motor neurons from sporadic ALS cases [45]. 
Autophagy is also abnormal in both sALS and fALS [46]. Additional 
autophagy-related genes overexpressed in LCM-MN’s from ALS 
subjects include DCTN1 (ALS/CTL=2.93) that encodes the p150 
subunit of the transporter protein dynactin, and Rab7a (ALS/CTL= 
3.98) that encodes the small GTPase Rab7 that regulates the maturation 
of autophagosomes, amphisomes, and late endosomes in cells [47]. In 
toto, the gene expression data are consistent with an over-activation of 
the autophagy system in ALS MN’s.

There is also the possibility that in ALS neurons is losing their 
integration into extracellular matrix, such as occurs in cancer metastasis 
during “epithelial-mesenchymal transition” (EMT). Recent studies in 
non-CNS cells have demonstrated that EMT can occur with activation 
of autophagy stimulated by reactive oxygen species [48].  We found 
that expression of two EMT markers were increased in ALS motor 
neurons, vimentin (ALS/CTL = 2.6) and N-cadherin (CDH2, ALS/CTL 
= 2.9). E-cadherin (CDH1) expression, normally reduced during EMT, 
was not detectable in ALS MN’s by RNA-seq. Other stresses may lead 
to the changes we observed, that may result in gene expression changes 
mimicking EMT.
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Our post-mortem tissue study has many limitations. These include:

Limited sample numbers: We had only so many ALS and CTL 
cervical spinal cord samples available to us, from which we were able 
to extract motor neurons with high-enough RNA quality to be useful. 
In addition, it required almost a year for a skilled operator (ACL) to 
capture enough neurons from a total of 10 cervical spinal cord sections 
to yield RNA’s of sufficient qualities for amplification, carry out 
amplification and the qPCR studies. In addition, RNA-sequencing is 
costly, even though we carried out our own library preparation and 
bioinformatics.

Post-mortem status: All of our ALS subjects died from ALS; thus, 
they were at end-stage, and our findings may primarily represent 
survival strategies among neurons still present. Those neurons that have 
died may have other deficits. We have no insights into the temporal 
sequences of appearance of the deficits we appear to have uncovered, 
nor do we have insights into their origins. 

Limitations of gene expression: Cells live and die usually by 
the actions of proteins, not RNA’s. Gene expression can provide 
a “snapshot” of what cells and tissues are experiencing and perhaps 
new directions they may utilize as adaptive strategies. However, gene 
expression studies don’t necessarily reflect the final status of proteins 
in cells, as other factors (particularly microRNA’s) can alter protein 
translation from mRNA genes.  Thus, abnormalities in gene expression 
may or may not ultimately be reflected in cellular protein changes.

Cell heterogeneity: In order to carry out quantitative gene 
expression with current technology, it was necessary to isolate 
hundreds of motor neurons that could be pooled to yield RNA samples 
for amplification, multiplex library construction and sequencing. Thus, 
our findings represent at best population averages, and one should not 
assume that all neurons in the sample are behaving identically (they 
likely are not). Hopefully as technology advances, more single neuron 
RNA-seq studies can be carried out from tissue sections that would 
yield a more diverse picture of cellular responses to disease processes.

In spite of these significant limitations, we feel our results suggest 
additional directions for further investigations and experimental 
therapeutics. In terms of additional investigations, it might be 
worthwhile to pursue the possibility that the “prolonged autophagic 
death” described by Martin [49] and increased autophagy markers in 
sporadic ALS MN’s described by Sasaki [45] might arise as a result 
of oxidative stress-driven autophagy [48] through activation of 
epithelial-mesenchymal transition (EMT) of motor neurons. EMT is 
not known to occur normally in non-malignant tissues except during 
developmental neuronal polarization and migration [50], amniotic 
membrane rupture [51], organ fibrosis [52] and cardiac cells in culture 
[53]. EMT can be stimulated by a variety of factors, including TNF-α. 
Thus, it was of interest that two TNF receptor superfamilies (“SF”) 
showed increased expression in ALS MN’s: TNFRSF1A (ALS/CTL = 
3.0) and TNFRSF21 (ALS/CTL = 2.0). The latter is associated with NF-
kβ signaling, which has been shown to mediate EMT of non-neoplastic 
cardiac cells [53]. If EMT is occurring in adult ALS motor neurons, this 
would represent a new paradigm, amenable to inhibition, such as has 
been demonstrated with rapamycin treatment of cervical carcinoma 
cells [54] and curcumin treatment of human kidney tubular epithelial 
cells [55].

It would seem advantageous to treat sALS subjects for multiple 
simultaneous abnormalities. These could include strategies to 
detoxify free radicals and reduce oxidative stress, strategies to reduce 
inflammation in the CNS, and strategies to stimulate mitochondrial 

biogenesis so as to increase expression of respiratory (OXPHOS) 
proteins [56]. It is useful to consider the possibility that ALS subjects 
might be heterogeneous in these problems, with different subjects 
having different “proportions” of each deficit.

Methods
Our methods for acquisition of cervical spinal cord, isolation 

by LCM of motor neurons from cervical spinal cord sections, 
RNA isolation and amplification, cDNA generation and qPCR of 
mitochondrial genes have been previously described [26,38]. Methods 
for generation and quantitation of multiplex RNA-seq libraries from 
these amplified RNA’s have also been described [38]. Paired-end 
RNA sequencing of multiplex libraries made by one of us (DGB) were 
carried out by Cofactor Genomics (https://www.cofactorgenomics.
com). Compressed sequencing files were examined by FastQC then 
trimmed of sequencing ends using Trimmomatic.  Minimum Phred 
scores were 20 (sequencing accuracy = 99%). Trimmed sequences were 
aligned against the human hg38 genome using Tophat2/Bowtie2 and 
quantitated against the hg38 transcriptome using Cufflinks (JPB) as 
described in [36]. Statistics utilized version 7 of Prism for Mac (www.
GraphPad.com).

Conclusions
Motor neurons from ALS subjects, isolated by laser capture 

microdissection (LCM) and analyzed by RNA sequencing against the 
hg38 version of the human genome, showed multiple gene expression 
abnormalities. The most prominent involved vacuolar ATPase systems, 
but other notable abnormalities included increased autophagy gene 
expression and markers of endothelial-mesenchymal transition. 
Interruption of these processes may reduce motor neuron death in ALS 
that morphologically is autophagic.
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