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Abstract
Traumatic brain injury (TBI) can be caused by accidents like road traffic accidents (RTA), sports injuries, and injuries at home. It is a major health issue, very often 
fatal and causing high morbidity, changing the lives of both the person injured and the families involved. Anticipating and preventing secondary injury and seizures 
post-trauma, defining severity of TBI, predicting TBI outcomes and arousal from coma or declaration of vegetative state or brain death form pivotal checkpoints in 
TBI management. Other challenges faced include identifying malingerers from genuine individuals with post-TBI morbidity, defining the severity of previous TBI 
in the field or previous injuries when reports are lost. Depending on both its severity and location it can cause a variety of post-TBI cognitive, sensory and tactile, 
and motor impairments. In such instances the present paper looks at how the electroencephalographs (EEG) like NeuralScan can and do contribute uniquely and 
significantly aiding in assessment, continuous/periodic evaluation during the course of recovery, brain-retraining and rehabilitation in evaluating temporal changes in 
neuronal functionality following TBI. 
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Vital statistics on traumatic brain injury (TBI)

To better appreciate the unique and valuable contributions that the 
high temporal resolution electroencephalograph (EEG) like NeuraScan 
provide in the detection, classification, treatment, management and 
rehabilitation of traumatic brain injury (TBI) a brief review of the key 
epidemiology, consequences, co-morbidities, neuropathophysiology 
and outcomes of TBI is appropriate. In 2016, the incidence of traumatic 
brain injury (TBI) was 27·08 million and prevalence was 55·50 million 
[1]. In 2018 the global incidence of TBI was 69 million individuals 
worldwide and predicted to be the third leading cause of mortality in 
2020 [2-5]. Incidence rates based on TBI severity determined using 6 
studies are that mild TBI affects approximately 55.9 million people each 
year (740 cases per 100,000 people), moderate TBI affects 7.64 million 
people each year (101 cases per 100,000 people), and severe TBI affects 
5.48 million people each year (73 cases per 100,000 people) with the 
proportion of mild, moderate and severe being 81.02%, 11.04%, and 
severe 7.95% respectively [5-10]. The causes of traumatic brain injury 
(TBI) range from falls, motor vehicle accidents (traffic and pedestrian), 
self-harm (falls, gunshot wounds-GSW), abuse/domestic (adult or 
children) violence, street violence, work/industrial/construction 
incidents (falls, blasts) and military maneuvers/terrorism, (falls, fire 
arms, blasts, explosions). 

Following a TBI the duration from injury to recovery (Figure 1: 
LORETA images tracking injury to recovery taken using NeuralScan 
by Medeia) can vary depending on the duration between injury and 
commencement of treatment, severity and location of the injury. While 
earlier it was thought that only moderate-severe TBI survivors (50-65%) 
experience debilitating emotional, psychological and neurocognitive 
consequences (Figures 2a and 2b) in recent year’s studies have shown 

that individuals (athletes, military personnel and elderly) with mild TBI 
(mTBI) also share the same risk [4-7,11-16]. mTBI accounts for 1.6-
3.8 million sports-related 320,000 military-related concussions [17-20]. 
The consequences of TBI affect personal, social and work life as well 
as influence the rate of age-related cognitive decline [20-29]. Military 
veterans with mTBI have been shown to be at a 56% increased risk of 
Parkinson disease (PD) [30]. Studies on TBI and the risk of dementia 
or Alzheimer’s disease (AD) have shown no similar association [31]. 

Whether it’s mild or, moderate or severe TBI though for some 
individuals return-to-normal it is uneventful for many others it requires 
a concerted and integrated approach on the part of a myriad medical 
specialties extending to family, social and occupational support where 
rehabilitation is concerned [32-38] an individual. Further compounding 
the issue is that many individuals with possible/probable mild TBI 
following sports injury, falls and road traffic accidents (RTA) etc do not 
seek treatment. A survey of 1381 individuals with TBI found 42% did 
not seek treatment with age, severity of TBI and injury occurring at 
home being factors associated with not seeking treatment [32,39]. 
Similarly, less than half of patients (41% [343 patients]) reported having 
seen a medical practitioner about their mTBI at 2 weeks, and 44% (367 
patients) reported seeing a medical practitioner by 3 months [40-42]. 
Another feature of mTBI is that very often individuals do not seek 
medical care, among those who do seek care there is a lack of follow-
up care even if they tested positive on computed tomography (CT) 
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Figure 1. Working example of the dual use of eLORETA/sLORETA: To “track TBI” from injury to recovery, To “track Z-score retraining of the brain”, LORETA Images taken using 
NeuralScan by Medeia 

and post mTBi symptoms exist/persist symptoms this in turn results 
in longer-lasting symptoms which may have long-term consequences 
[40-42]. 

Another key aspect about TBI is it is dynamic. A brief overview of 
the neuropathology of TBI is presented in Figure 3 which illustrates 
how both the primary and secondary injuries influence outcomes 
[43-45]. Figure 3a presents the different types of primary injury that 
can occur, the consequences of which is the secondary injury (Figure 
3b) which can happen within minutes or days following the trauma. 
The secondary injury is the result of the cascade of events (molecular, 
chemical, and inflammatory) that are activated following the primary 
injury [43-45]. Hence one of the main goals of TBI treatment protocols 
is to repair the primary injury and prevent secondary injury which if 
left unchecked can cause further cerebral damage [43-45]. 

Short and long term outcomes of traumatic brain injury (TBI) 
vary depending on the severity of injury (primary and secondary), co-
morbidities during hospitalization and following discharge, location of 
the injury, medical history prior to the TBI, previous TBI, presence of 
polytrauma [16,32-38,46-48]. At 8-years following a TBI, 19.8% and 
46.5% were severely and moderately disabled respectively with 33.7% 
with good recovery among 86 individuals who participated in the study. 
Somatic complaints were balance 47.5%, motricity 31%, and headaches 
36%, cognitive complaints: memory 71%, slowness 68%, concentration 
67%, 25 % had anxiety and 23.7% for depression. 48.7% were employed 
in a productive job and 38% declared a salary loss since the TBI [46]. 

When only time can tell

Among the several studies aimed at determining blood, imaging 
and electrophysiology (EEG) based markers to classify, monitor and 
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Figure 2. Prevalence of co-morbid conditions among a) Children (parent-reported), and b) <65 and ≥65 year-old Adults following TBI

Jain, K. K. (2008) Drug Discovery Today 

https://www.nap.edu/read/13121/chapter/6 Chapter 3 

 
Figure 3. Trauma brain injury and its neuropathophysiology
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treat TBI the EEG (machines like NeuralScan by Medeia) remains one 
of the earliest neurodiagnostic assessment tools that was used [49,50]. 
Denis Williams recommended and demonstrated the use of the EEG 
both in evaluating progress in cerebral repair and when the damage is 
so slight that it cannot be detected by other imaging techniques [50]. He 
advocated the EEG as a useful tool when monitoring the brain following 
initial trauma, monitoring to prevent secondary injury and when 
planning treatment and rehabilitation (Figures 4a and 4b). Following 
a TBI there are several time points (as mentioned below) at which the 
high temporal resolution, quantitative EEG (QEEG) and LORETA for 
spatial resolution that EEG machines like NeuralScan by Medeia offer 
is key (Figures 1, 4a,  4b and  5) .

Identification, Monitoring and treatment of Seizures following 
TBI: The portable non-invasive EEG allows for evaluating a patients 
electrophysiological status at the trauma site or bedside (emergency 
room/ trauma unit/operation theatre/intensive care unit-ICU) enabling 
identification of nonconvulsive seizures (NCS) following cerebral, 
trauma monitoring of treatment and categorization of the severity 
of the TBI [51-56]. NCS and periodic discharges (PD) following TBI 
contribute to disruption of brain metabolism [51-56]. Of the 94 patients 
with moderate-to-severe TBI seizures occurred in more than one in five 
patients during the 1st week following primary injury [51]. As NCS are 
found to occur frequently following a TBI and require continuous EEG 
(cEEG) monitoring for timely detection, prevention or treatment of NCS 

 

 

After I was released from the hospital (a week and a day after the fall) my physiatrist 

followed up regularly during the first month and adjusted exercises as needed. I had absence 

seizures and was on anticonvulsant medications until I was around 21 years old. I had 

regular blood work, electroencephalograms (EEGs), and follow-ups with neurologists and 

neurosurgeons to make sure everything was under control. The other sequela that lingered 

was short-term memory impairment. I continued to work on fine motor control for some time; 

after several months, I was playing the recorder and the flute again and even rejoined the 

orchestra.  

 

a

b

Figure  4. (a) Current and potential EEG-based markers for both “TRACKING RECOVERY and brain RETRAINING”.  (b) Excerpts from a Case Study illustrating both the use of EEG 
in TBI treatment and what is possible when high-quality acute and post-acute care are provided, even after 5-hours delay in the identification of TBI. Taken from: Panel 6 “a patient’s 
testimony”; Maas AIR et al, Lancet Neurol. 2017 [38]. In 1988, 12 year old, Laura E Gonzalez-Lara fell down an orchestra pit as she took part in a concert in a small town in Mexico and 
suffered a TBI. TBI identification and treatment commenced 5-hours after her injury. Gonzalez-Lara benefited from the support of her parents, both physicians, and extended family

https://www.ncbi.nlm.nih.gov/pubmed/?term=Traumatic+brain+injury%3A+integrated+approaches+to+improve+prevention%2C+clinical+care%2C+and+research
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Figure 5. The potential of NeuralScan by Medeia in “TRACKING RECOVERY and brain RETRAINING” (Images of both features and reports that NeuralScan comes with; a)19-channel 
EEG tracing capturing ability, EEG tracing at rest, evoked potentials and event related potentials (ERP, b)Reports on visual and auditory processing, attention, working memory, reaction-
time (RT), RT variance (RTV), missed and wrong responses, assessment of Broadmann areas in terms of their function ability, c) qEEG and topographical maps, d)time frequency analysis 
and e) identification of Broadmann areas affected)
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[51-56]. In a prospective multicenter study of severe TBI (n=34) surface 
and invasive intracortical depth electroencephalography (EEG) was 
carried out [54]. Cerebral microdialysis was carried out simultaneously 
to measure lactate/pyruvate ratio a marker of metabolic crisis. NCSs 
or PDs occurred in 61%. 42.9% of the NCSs were only captured when 
intracortical depth EEG was used. The maximum duration of NCS 
was many hours. Disruption of cerebral metabolism was seen during 
NCS or PDs but not during electrically nonepileptic epochs [53]. NCS 
following TBI has also been correlated with hippocampal atrophy [55]. 

EEG- based markers to classify TBI severity

To classify the severity of TBI three parameters are required, the 
Glasgow Coma Score (GCS), duration of loss of consciousness (LOC) 
and duration of posttraumatic amnesia (PTA) [57-59]. However each 
parameter has its own technical difficulties ranging from the subjectivity 
and inter-rater variability of the GCS to patient being unaware of the 
exact time when consciousness or memory was lost and at times the 
GCS or LOC or PTA or all three were not obtained [58-60]. To make the 
classification of TBI severity more objective an EEG-based index of TBI 
severity was developed. The EEG’s ability to identify blast concussions 
years later, in outpatients, mild TBI (following injury accuracy 95.67% 
with >75.8% accuracy 1-year after the injury) have been demonstrated 
[61-65]. 

In 1989 Thatcher demonstrated the EEGs ability to discriminated 
between mild TBI in a study of 608 mild TBI and 108 age-matched 
normal subjects (overall discriminant classification accuracy=94.8%) 
and cross-validated the findings in three separate independent study 
populations [63,64]. The EEG features associated with mechanical head 
injury were: “i)increased coherence and decreased phase in frontal 
and frontal-temporal regions; ii)decreased power differences between 
anterior and posterior cortical regions; and iii)reduced alpha power 
in posterior cortical regions” [65]. In a QEEG study of 91 subjects (32 
mTBI with <20 minutes LOC, 9 TBi with > 20 minutes LOC and 52 
normal individuals) 1999 Thornton evaluated the robustness of these 
EEG variables at >1-year following TBI [66]. The high frequency 
discriminant developed by Thatcher classified the severity of 100% of 
TBI subjects at 1-year post-TBI, 87% of subjects at all time periods and 
79% of subjects 43-years post injury. To derive the EEG index of TBI 
severity, 108 patients with closed TBI 15 days to 4 years after injury 
(mild TBI n=40, mild TBI n=25, and severe TBI n=43) were studied via 
eyes-closed resting EEG and power spectral analyses of 2- to 5-minute 
segments was done (19 electrodes, International 10/20 System, left 
ear lobe as reference). Discriminatory ability of the index of severity 
index developed from the EEG variables was between mild versus 
(vs) severe TBI groups was accuracy=96.39%, sensitivity=95.45%, and 
specificity=97.44% and the t-test showed significant difference between 
groups (Mild vs. Moderate, p<0.0001; Mild vs. Severe, p<0.000001; 
Moderate vs. Severe, p<0.00001) [65]. 

Naunheim and Neil took these findings further for two reasons; i)
the incidence of TBI and mild TBI making computed tomography (CT) 
imaging in acute mTBI expensive and impractical, ii)70% of individuals 
with TBI selected for CT using criteria like the New Orleans Criteria 
(NOC) were CT negative [67,68]. Naunheim validated the qEEG TBI 
severity index (specificity 90%) in 105 TBI subjects (53 CT positive - 
TBI discriminant index of 80.4 and 52 CT negative-TBI discriminant 
index of 38.9) and 50 healthy controls (TBI discriminant index of 24.5) 
[67]. Neil studied 119 patients with mTBI, the patients were screened 
using a) CT and b) qEEG, using the EEG-based index of TBI severity 
(0 minutes, eyes closed resting EEG with frontal electrodes FP1, FP2, 

AFz, F7, and F8, referenced to linked ears arranged according to the 
International 10/20 system) to determine if they required a CT or not. 
Using Marshall’s criteria the subjects were then classified as CT positive 
or negative. TBI-Index and the NOC had sensitivities, at 94.7% and 
92.1% respectively [68]. The specificity of the TBI-Index versus NOC 
was 49.4% versus 23.5%, positive predictive value, negative predictive 
value and positive likelihood ratio were better with the TBI-Index, 
combining both indices increased sensitivity to obtain a positive CT 
result to 97%. [68].

Predicting TBI outcomes and readiness to-return-to-play/
work/drive: In patients with moderate or severe TBI it can be used to 
guide assessment and treatment post-TBI (primary injury), for early 
identification of secondary injury if any, in recovery, prior to discharge 
and rehabilitation (Figure 3) in particular if neurocognitive therapy is 
required and in determining if the patient is ready to-return-to-play/
work/drive. Invasive continuous EEG (cEEG) is used in monitoring 
secondary brain injury [38]. 

Predicting TBI outcomes: Assessment of consciousness level is 
important in patients with TBI as it aids clinicians in treatment decision 
making. The bispectral index (BIS, ranging from 0: isoelectric signals 
to 100: conscious patients) originally used to measure the clinical state 
of anesthesia was evaluated in a study by Senapathi as a candidate 
marker of consciousness and sedation level in TBI patients (n=78) 
with decreased consciousness. BIS value was highly correlated with 
GCS score (r=0.744, p< 0.01) in TBI patients [69]. Mean BIS values of 
mild, moderate, and severe head injury were 88.1±5.6, 72.1±11.1, and 
60.4±11.7, respectively. Further an equation to predict GCS from a BIS 
value derived using linear regression analysis: GCS = 0.21(BIS) – 5.208. 
Mahadewa assessed the correlation between Glasgow Outcome Scale-
Extended (GOS-E) scores calculated 6 months after the TBI event with 
BIS values on admission in 68 TBI patients who underwent craniotomy, 
correlation was at r =0.921, p<0.01 (70). Findings suggest that BIS 
scores upon admission may be used to predict the outcomes in patients 
with TBI. An equation to predict GOS-E from BIS value derived from 
the linear regression analysis in this study, and this is GOS-E =0.19(BIS) 
– 8.3 [70].

EEG features of worse outcome following a TBI include lower 
(regional) EEG power, slowing of the EEG decrease in alpha power, 
lower EEG (alpha) variability, and increased coherence [50,63,71-78]. 
A recent study by Haveman used multifactorial Random Forest models 
and qEEG parameters to predict outcome in 57 patients (training set; 
n = 38 and a validation set; n = 19) with moderate to severe TBI [78]. 
Outcome at 12 months by the Extended Glasgow Outcome Score 
(GOSE) was categorized as poor (GOSE 1–2) or good (GOSE 3–8). 
Twenty-three qEEG features were extracted to develop the multifactorial 
Random Forest model which was compared with the International 
Mission for Prognosis and Clinical Trial Design (IMPACT) predictor 
in its ability to predict outcomes via GOSE. The predictive ability of the 
new model was evaluated using leave-one-out (area under the receiver 
operating characteristic curve-AUC for the training set was AUC= 0.94, 
(specificity 100%, sensitivity 75%) and validation set AUC = 0.81, 
(specificity 75%, sensitivity 100%). The IMPACT predictor had an AUC 
of 0.74 (specificity 81%, sensitivity 65%) and 0.84 (sensitivity 88%, 
specificity 73%), respectively.

Monitoring cortical spreading depolarizations: Another feature 
occurring following a TBI and warranting monitoring is cortical 
spreading depolarizations which are associated with worse prognosis. 
The neuropathophysiology behind this feature is that cortical spreading 
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depressions, or propagating waves of astrocyte depolarization have 
been linked with the neuropathological cascade that characterizes 
secondary injury [43-45,56-63].

Determining readiness to-return-to-play/work/drive: In the 
interest of brevity we will briefly discuss EEGs potential to determine 
readiness to-return-to-play/work/drive using sports-related-injury 
as a classic example. Following mTBI symptoms and in the clinical 
recovery stage of moderate and severe TBI while symptoms resolve it 
is imperative that the brain is allowed sufficient time to heal. Athletes/
coaches/military personnel tend to underreport symptoms due 
to personal goals, pressure and desire not to let down teammates. 
Sustaining multiple concussions before the brain has had time to 
heal has revealed an excess of amyloid-beta plaques and tau tangles 
in autopsies of football players, possibility of chronic traumatic 
encephalopathy (CTE) dementia, mental health issues, and depression 
[79]. A brain recovery can extend beyond the clinical recovery time, so 
an improved neurological function index is needed [79-82]. Post-TBI 
symptoms can last from 1-month to 3-months,and can even become 
chronic (even in mTBI-15%) when microstructure white matter lesions 
are present and fail to heal [83-86].

McCrea studied the clinical utility of the EEG from injury to 
recovery (eg: Figures 1 and 5) in a prospective, non-randomized study 
of 396 high school and college football players, including a subset of 28 
athletes with concussion and 28 matched controls. Baseline measures of 
postconcussive symptoms, postural stability, cognitive functioning, and 
qEEG (preseason) were obtained [87]. On injury, qEEG, neurocognitive 
tests and symptom recording were carried out on day-Injury, day-8 and 
day-45 in the injured and control group. Results for the injured group 
were: day-injury: symptoms present till day-3, neurocognitive testing: 
results were poor and qEEG: showed abnormalities. Day-8: symptoms 
resolved, neurocognitive testing: return to baseline and qEEG: showed 
abnormalities. Day-45: symptoms resolved, neurocognitive testing: 
return to baseline and qEEG: return to baseline [87]. Another study by 
Barr on 59 athletes with TBI and 31 controls using qEEG to track injury 
and recovery on day-injury, day-8 and day-45 also yielded similar results 
[88]. The findings indicated that EEG abnormalities persist past clinical 
recovery and symptom resolution and are suggestive that return-to-
play decisions are based on EEG patterns returning to baseline [89,90].

To increase the objectivity of the return-to or remove-from play 
decision and keeping the above findings in mind McNerney developed 
a scoring system combining both EEG and symptom questionnaires 
[91]. 38 individuals with mTBI and 47 controls were administered a 
symptom questionnaire, behavioral tests, and resting state EEG was 
measured [91-95]. 12 EEG variables were recorded (delta, theta, alpha, 
beta, sigma, and gamma bands from the A7-FpZ and A8-FpZ voltages). 
Accuracy was 75–82% when only symptoms were used to predict 
return-to-play, while EEG in combination with three-symptoms had an 
accuracy of  91%.

Assessment of coma, clinical recovery of consciousness and 
cognitive function: In patients presenting either at trauma site or 
at the ED who are unconscious/ in a coma and therefore assessment 
using verbal commands is futile triaging can classification of severity 
of TBI can be achieved and the depth of coma assessed using EEG. 
In comatose patients in a vegetative state it can be used in decision 
making regarding when life saving measures are futile. Three EEG 
features have been considered as prognostic indicators of recovery of 
consciousness, they include sleep spindles (hallmark of stage-2 sleep, 
absent in coma) (96,97), EEG reactivity (EEG‐R, the EEG response to 

external stimulation) and EEG-awakening (a combination of EEG-R 
and sleep spindles). 106 individuals in a coma for >3 days were followed 
for 1 month, receiving operator curve (ROC) analysis revealed EEG-
awakening (0.839; 0.757–0.921) to be the best prognostic indicator of 
recovery from consciousness followed by EEG-R (0.798; 0.710–0.886), 
sleep spindles (0.772; 0.680–0.864), and Glasgow Coma Score (GCS) 
scores (0.720; 0.623–0.818). ERPs involved in predicting awakening 
N100, mismatch negativity (MMN), and P300, is a highly significant 
predictor for awakening [96-99]. The absence of the somatosensory-
evoked potential (SSEP) N2 in comatose patients has traditionally been 
regarded as a good indicator for the likelihood of non-awakening [100]. 
However, its presence does not guarantee recovery of consciousness 
[101,102].

Declaration of brain death: It can and is used in deciding if a 
patient is brain dead particularly in instances where organ donation is 
being considered by the next of kin.

 Since brain death (BD) was first defined as “coma dépassé” 
there have been several efforts to reach a global consensus on best 
practices to be followed when declaring BD especially in view of organ 
transplantation [103-107]. Neurosurgeons and neurologists when 
surveyed about the standard best and objective BD declaration practices 
they followed 65% mentioned they required an isoelectric EEG; 29% 
needed only one EEG while 36% required two EEGs, 24 hours apart 
[108]. In order to increase the objectivity of BD declaration each test 
used has specific guidelines. EEG guidelines recommend use of a 16 
channel, 10-20 system, 30 minute EEG recording, with auditory and 
bilateral somatosensory stimuli (touch and pain) repeatedly performed 
and clearly marked10,12 on the recording, with the time interval 
between the two EEGs dictated by age of the patient [109,110]. 

Metal shrapnel: In gunshot wounds (GSW) and blasts where 
metal shrapnel prevents assessment via neuroimaging (MRI and CT). 
In TBI caused by blasts and GSW the primary injury suffered by the 
individual is composed of injury due to the event, further injury by 
penetrating metallic shrapnel, the velocity with which the bullet is fired 
or the individual is thrown due to the blast and the injury caused as the 
individual falls (height of the fall and the surface texture on which the 
individual lands) [111,112]. Evaluating the severity of the injury using 
magnetic resonance imaging (MRI) warrants caution as the powerful 
magnet may cause further injury. In such instances EEG to assess TBI 
severity and TBI location via LORETA appears beneficial [111,112]. 

Malingering: Healthcare personnel and insurance companies 
use the EEG to ascertain if symptoms/complaints reported are due to 
current or previous TBI or other neurocognitive or neuorodegenerative 
disorders or malingering. 

“Malingerers are individuals in who symptoms are consciously 
produced (either exaggerated or fabricated) to achieve their internal 
eg: achieving the sick role, when being evaluated for disability pensions 
or monetary compensation for damages sustained in accidents”. 40% 
of mTBI individuals undergoing evaluations may be malingerers 
[113]. Tests carried out to evaluate malingered neurocognitive deficit 
(MNCD) include the Test of Memory Malingering (TOMM), tests 
capturing the evaluee’s responses involving aspects that are under less 
conscious control, such as reaction time (RT) and brain activity using 
electroencephalograph (EEG). Malingering evaluees have slower RTs 
than both normal and brain injured control groups; [114]. Their RT 
patterns also differ resulting in a cognitive phenomenon, the “Stroop 
Effect” [115]. Findings were that honest (HON) normals and brain 
injured patients exhibited the Stroop effect, whereas malingerers 
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(uninformed/coached) exhibited an inverted Stroop effect. As TBI 
causes changes in EEG patterns, it in turn impacts on ERP markers of 
cognitive functions, including processing speed, sustained attention, 
performance monitoring, inhibitory control, and cognitive flexibility 
[116]. Among the ERP markers, the P3a can differentiate between those 
with TBI and malingerers [117]. 

In a malingered neurocognitive deficit (MNCD) study by Vagnini, 
32 normal individuals (honest-HON; n = 16), normal individuals 
instructed to behave as malingerers (MAL; n = 16) as 15 patients with 
(TBI) were administered the Test of Memory Malingering (TOMM) 
and the Old-New Task test [118]. The time intervals examined for ERPs 
were N1, P1, N2, P2, N3, P3 etc. Comparison of the mean ERP amplitude 
values for each group suggested that HON and TBI showed the typical 
ERP Old-New effect while MAL differed. The effect for the Old-New 
task was intact for HON, reduced but trending towards significant in 
TBI, and absent in MAL. The differences between ERPs for frontal 
vs. posterior electrodes, HON had the strongest activity in the frontal 
area, for those with TBI strongest activity was in the posterior area, and 
MAL showed no significant difference between frontal and posterior 
activity. The frontal-posterior difference might be an effective indicator 
to identify malingerers. 

In another study carried out by Neal latencies of memory-related 
brain potentials (sensitivity of 80% and specificity of 79%) were 
compared among individuals with moderate or severe TBI (n=14), 
and healthy age-matched individuals (honest; n=12 or faking memory 
deficit; n=15) [119]. Test of Memory Malingering (TOMM) and the 
Old-New Task test were used [57,58,120-126]. Bilateral fractional 
latencies of the ERP, P3a at frontal sites were averaged latencies = 396 
ms malingerers and averaged latencies = 312 ms for true TBI in the 
frontal sites. Only malingerers showed asymmetrical frontal activity 
compared to the two other groups [120-126]. 

Challenges of EEG-based assessment of TBI: In mild TBI, 86% 
with an abnormal neurological examination have an abnormal EEG 
while only 23% of individuals with abnormal EEGs were abnormal 
on neurological examination [127-133]. These findings have been 
attributed to the order in which the brain heals; first symptom 
resolution, second clinical recovery and finally EEG patterns returning 
to normal. EEG abnormalities are more commonly seen in patients 
with durations of unconsciousness lasting more than 2 minutes (56%) 
than in patients with briefer periods of unconsciousness (17%) (127-
-133). EEG changes vary with individuals, the severity of head injury 
and changes in an EEG following a TBI can be restored to baseline as 
early as 15 minutes after concussion [127-133]. 

EEG-based markers to evaluate post-trauma neurocognitive 
ability: Assessment of cognitive impairment following a TBI ranges 
from evaluating pre-existing and new knowledge (acquisition and 
comprehension), attention, memory and working memory, judgment 
and evaluation, reasoning and “computation”, problem solving, 
decision-making, comprehension, production of language, temporal 
organization, conflict management, to cognitive and psychological 
(personality changes, impairments in processing social cues, emotions 
and in communication) aspects of behavioural disorders [134-157]. 
These cognitive issues together with accident phobia contribute to 
poor-quality of life, social and vocational outcomes following TBI 
account for 0.85 million requiring long-term rehabilitation and care in 
the United States [152,154-158].

Many of the cognitive impairments seen are attributed to EEG 
spectral changes [159-161]. Even mTBI is known to lead to EEG-

detectable changes in brainwave patterns, connectivity, coherence, 
power and amplitude [65] and in neuronal network dysfunction 
[162,163]. Rapp in a review of 25 qEEG studies on mTBI found that 
though decrease in alpha power and increase in delta, beta, and theta 
power was often reported study findings varied greatly the first difference 
being attributed to differences in study aims and methodologies and the 
second due to the fact that no two TBI are the same. For example, only 
three of the 25 studies examined functional connectivity and coherence 
in mTBI and 9 studies examined the discriminatory ability of EEG in 
mTBI. O’Neil’s study on EEGs discriminatory ability did not compare 
its ability to distinguish between mTBI versus controls instead the study 
examined sensitivity of the TBI-Index (94.7%) versus the New Orleans 
Criteria (NOC) and the TBI-index-plus-NOC (97%) in determining 
which patient with mTBI required a CT and which did not [68]. Evoked 
potentials (EP) both short and middle latency are used to predict coma 
outcomes and awakening in TBI while long-latency EPs are used to 
predict recovery of higher level cognitive function [92,153,164]. ERP 
associated with sensation (N100); perception (MMN); attention (P300), 
memory for own name (Early Negative Enhancement to Sound of 
Own Name); and comprehension (N400) are also used to differentiate 
between TBI and healthy controls. ERPs used to monitor cognitive 
impairment following TBI include:

a) The error-negativity/error-related negativity (Ne/ERN) and post-
error positivity (Pe) used to evaluative control/performance 
monitoring [165,166]. 

b) Feedback-related negativity (FRN) is evoked following performance 
or response feedback, with a larger FRN indicating unfavourable 
outcome [165].

c) P300 amplitude and latency

d) Elicited using colours (red, green or darkness affect) is used to 
evaluate cognition and emotion post-TBI [167,168]. 

e) P300 elicited using images capturing facial cues is used to evaluate 
social behavior [155,163]. In a study of 13 individuals with moderate 
to severe TBI and 13 healthy controls P300 was measured following 
presenting of 30 pictures of angry faces and 120 pictures of neutral 
faces. TBI versus (vs) controls had a P300 latency of 486ms vs 416 
ms (p<0.005), amplitude of 11.3µV vs 19.1µV(p<0.005) and reaction 
time of 653ms vs 443 ms (p<0.005). Results indicate that following 
TBI patients had difficulty in detecting facial cues.

f) P300 amplitude and latency is correlated with duration of 
posttraumatic amnesia [169].

g) P300 elicited via three-stimulus oddball tasks demonstrated a 
decrease/suppression (in N2 and P3b amplitudes) in subjects 
≥3years post-concussion compared to healthy controls and among 
multi-concussion athletes [136].

h) Gosselin in a study of 44 individuals with mTBI and 40 controls 
evaluated frontal: N200 and N350 and parietal: P200 and P300 
amplitude and latency [139]. The propelling fact for the study was 
that 15% of individuals with sports related concussions/mTBI have 
persistent cognitive problems. The study examined working memory 
(WM) post-mTBI due to a motor vehicle accident (MVA) or sports 
injury. Chief findings were mTBI versus controls had significantly (p 
< 0.05) smaller amplitudes of both frontal N350 and parietal P300 
and worse (p < 0.05) accuracy on WM task.

i) Auditory evoked potential (AEP) and visual evoked potential (VEP) 
stimuli (including facial affective stimuli) can differentiate between 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Vagnini VL%5BAuthor%5D&cauthor=true&cauthor_uid=18608662
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healthy controls and TBI individuals and can be used to evaluate 
attention, detect emotion, and cognitive function [169-173]. 

j) Mismatch negativity (MMN) is used to evaluate automatic 
attentional processes and information processing. MMN is used 
to differentiate vegetative state from minimal conscientious state 
and in in predicting coma outcomes from coma [174,175]. The 
Halifax Consciousness Scanner (HCS) paradigm and the P300 are 
used to evaluate conscious awareness level [176]. Following severe 
TBI conscious awareness is often compromised which is usually 
using behavioral responses. In order to obtain a more objective 
idea of the patient’s conscious awareness level a semi-automated 
electroencephalography system (HCS) was designed and evaluated 
in 28 sTBI patients and 100 healthy controls. Here to P300 latencies 
correlated significantly (p<0.05) with sTBI versus controls as well as 
with the clinical assessment scores.

Visually evoked stimulus at 750 msec post-stimulus is used to 
evaluate word retrieval which requires precise interactions between 
different brain regions [144]. In a study on word retrieval in 19 retired 
professional athletes with TBI and 19 healthy controls, both groups 
did not differ in accuracy or reaction time, however healthy controls 
showed significant differences between retrieval and non-retrieval 
conditions (between 750msec to 1000msec) while individuals following 
TBI showed no such difference [144]. 

Sleep disorders after TBI: Sleep disorders (hypersomnia, 
insomnia, parasomnia, daytime somnolence, changes in sleep patterns, 
sleep-wake schedule and deranged sleep architecture) common in TBI 
patients compromise rehabilitation and return-to-work. Their timely 
diagnosis and treatment will help facilitate the rehabilitation process 
[177]. Urakami studied the spindle activity in acute, sub-acute, and 
chronic stages of posttraumatic coma and in 60 adult patients following 
diffuse axonal injuries (DAI), with sleep-related complaints 3 months 
to 2 years following TBI [178-180]. Findings include; the four source 
where spindle activation occurs included the precentral (slow spindles 
seen) and post-central (fast spindles seen) areas in posterior frontal 
cortex (PFC) and parietal cortex of each hemisphere. When spindle 
distribution was symmetrically in amplitude all four cortical areas were 
activated. However, when spindles exhibited an asymmetric distribution 
with an amplitude differences of >30% between the hemispheres then 
temporal activation occurred. In the postacute stage (mean 80 days) 
frequency, amplitude, cortical activation source strength of spindle 
activities was significantly decreased while in the chronic stage (mean 
151 days), spindles significantly increased, and no significant difference 
was found between normal subjects [180]. Cognitive functions also 
improved, with favorable 1-year outcome [179]. 

EEG patterns, neural connectivity and Z score biofeedback 
neurofeedback

In a study of gray matter-white matter normal control (n=25) 
subjects exhibited bimodal while TBI patients (n=31) exhibited 
unimodal gray matter-white matter histograms. More importantly 
while pixels of intermediate intensity (between grey and white matter) 
were at the border in controls, intermediate pixels were found both 
at the borders and in between grey and white matter in TBI subjects 
[181]. Functional impairments of the brain have been found to exist 
due to these and other changes in connectivity and network pathology 
[181,182]. The brain is thought to be composed of small-clusters 
with all clusters involved in a particular function interconnected in a 
manner that ensures optimum information processing [183]. Another 
theory it that the brain is both segregated into distinct regions based on 

function and yet it is integrated at the global level in order to promote 
information processing [183,184] with the prefrontal, frontal, and 
central sites all networked to ensure working memory (WM) and speed 
of information processing [185]. Specific functional networks exist for 
anxiety, language, memory, mood and pain [186-210]. The prefrontal 
cortex (PFC) is involved in working memory tasks, supplementary 
motor area (SMA) and anterior cingulate cortex (ACC) are implicated 
in “vocal-motor planning”, the primary motor cortex (PMC) and SMA 
in movement and the “default network” in resting and contemplative 
states [211-219]. 

White matter (high speed relay system) when damaged following 
a TBI results in slower delta and at times even theta waves emerging 
[220-223]. Hypercoherence or hypocoherence is also seen depending 
on the damage following TBI. Gray matter (high plasticity) damage may 
initially cause spectral changes (increase in alpha causing cortical idling) 
but with time and healing the changes may return to ear normal (beta 
followed by gamma indicating active networks) [220-223]. The return 
to near normal of brain waves patterns can be stimulated by cognitive-
behavioral/neurofeedback/ physical therapy interventions [224]. 
Transcranial magnetic stimulation (TMS), is a promising new tool used 
in treatment of TBIs like diffuse axonal injury (DAI) which account for 
40% individuals with severe TBI [225-232]. Neurofeedback involves first 
identifying functional networks in the brain associated with a patients 
symptoms and then stimulating the impaired functional network [233-
238]. A recent method used in EEG Neurofeedback is called Z-Score 
Neurofeedback here post-TBI individuals with symptoms/complaints 
are first compared with an age-matched population of healthy subjects 
to identify hubs and networks are unstable or dysregulated [233-238]. 
Using operant conditioning and reinforcement brain wave patterns 
in regions corresponding to the symptoms are stimulated until they 
go from exhibiting outlier patterns to closer to near normal Z-score 
patterns thus restoring equilibrium, increasing efficiency and the brain 
network and processing speed [233-238].

One review on EEG- and ERP-based markers of TBI found 
processing speed to be 1.54 times slower in TBI patients. Impaired 
perceptual and psychomotor processes were also observed [239]. 
P300 latency were found to reflect stimulus-processing time while 
contingent negative variation (CNV) reflected response-processing 
time. Following TBI impairment in processing of warning cues resulted 
in increased P2, N2 and P3 latencies as well as impaired attention to 
the warning cues indicated via reduced P2 amplitude compared to 
controls. As sustained attention is often a problem post-TBI one study 
used long-term focused attention (FA) meditation training to increase 
theta band consistency improving attention. The review also looked 
at ERP markers of performance monitoring, inhibitory control and 
cognitive flexibility following a TBI [239]. Another review focused 
on visual and auditory evoked ERPs. ERPs examined and elicited via 
visual or auditory odd-ball paradigms were N2, N350, and P3 i.e. P3a/
P3b components. The characteristic amplitude reduction and latency 
increase pattern was seen among mTBI patients [240-242].

Conclusion
Traumatic brain injury (TBI) is a major health concern in terms of 

morbidity, impact on the work force, family life and income, disability, 
cognitive issues and mortality it causes. Electroencelaphalographs 
(EEG) like NeuralScan are essential tools at specific crossroads in TBI 
evaluation, management, treatment and rehabilitation (like predicting 
seizures post-trauma, defining severity of current and previous TBI, 
identifying malingerers, predicting TBI or coma outcomes, and 



Miranda P (2020) Electroencephalography (EEG)-based detection, management, recovery and brain retraining tracking of Traumatic Brain Injury (TBI) when “Only 
Time Can Tell”

J Syst Integr Neurosci, 2020        doi: 10.15761/JSIN.1000230  Volume 6: 10-15 

Z-score training via Neurofeedback).The added benefit of machines 
like Neuralscan in TBI treatment are that they are clinician friendly, 
versatile, reliable, robust, portable and cost-effective allowing for use at 
the site of the injury, in transit, for continuous monitoring (stationary 
and ambulatory) allowing for evaluation of brain wave patterns, EPs, 
ERPs, qEEG, topographical maps and frequency analysis, LORETA 
based source analysis and neurofeedback.
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