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Introduction
Predicting the pre-clinical risk of Alzheimer’s disease (AD) years 

in advance of the onset of symptoms would present patients and 
clinicians with a greatly extended window of opportunity to introduce 
lifestyle modifications or applicable treatments with a potential to 
ameliorate or delay the onset of the disease [1-3]. This comes in the 
wake of findings that primary prevention of AD is possible as among 
the risk factors for AD, 1/3rd are modifiable and include metabolic 
syndrome and cardiovascular risk factors, lifestyle risk factors (physical 
inactivity, smoking), demographic factors like low education levels 
and depression [4-14]. “Pre-clinical AD” includes the presymptomatic 
individual who carries an autosomal dominant monogenic mutation 
and the “asymptomatic at risk state” includes the individual without the 
onset of clinical symptoms with the presence of any one of the current 
known biomarkers of AD like amyloidosis in the brain with or without 
neurodegeneration [2,4,15,16].

In terms of neurocognitive markers of AD, episodic memory, 
psychomotor speed, and verbal fluency decline 5–8 years while others 
like concept formation show changes 10-17 years prior to the onset 
of dementia [17-19]. However, these neurocognitive markers are still 
considered relatively non-specific as they are also seen in depression, 
drug abuse, and Parkinson’s disease [20-23]. Subjective cognitive 
decline (SCD), another candidate marker of pre-clinical AD had its 
own hiccups with only 16% of individuals with SCD progressing to 
clinical AD in the AMSTERDAM study, 7%–37% in the Mayo Clinic 
Study on Aging (MCSA) and 2.33% annual progression in Mitchell 
et al.’s study with a low relative risk of 2.07 [24-28]. Two other factors 
chipping away at its candidacy are that a) majority of individuals with 
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SCD are >60 years and b) <30% of individuals with SCD test biomarker 
positive [29-34]. 

In 2019 a study inferred that the P300 an event related potential 
(ERP) marker was able to differentiate with 100% accuracy between 
individuals with new-onset Alzheimer’s disease (AD) and normal 
subjects [35]. The study also suggested that the P300 elicited using the 
task-drive odd-ball paradigm recorded using electroencephalography 
(EEG) machines like BrainView NeuralScan could be potentially used 
to detect AD in the pre-clinical stage [35]. In 2019 it was estimated that 
5.8 million Americans had AD [36]. In general, normal aging exhibits 
“decline in” – recall, episodic memory, processing speed and divided 
attention, while implicit memory and recognition remains “stable” with 
semantic memory, crystallized IQ and emotional reasoning improving 
till ≈60 years of age [37-39]. Beginning with “loss of memory” (inability 
to encode or retrieve recent memories) individuals with Alzheimer’s 
disease (AD) subsequently complain of difficulty with attention, 
planning, semantic memory, and abstract thinking. Further progression 
of AD results in greater memory loss, language difficulties, failure to 
recognize close family and friends, emotional instability and finally loss 
of control over bodily functions [37-39].

The present article will describe the changes in working memory 
(WM) and information processing in pre-clinical AD and MCI 
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captured via the P300. The benefit of state-of-the art EEG machines 
like BrainView NeuralScan (Figure 1) is that in addition to ERP-
based (i.e. P300) identification of preclinical AD, brain mapping using 
quantitative electroencephalogram (qEEG), and source localization 
using low resolution brain electromagnetic tomography (sLORETA) 
imaging to identify Brodmann areas (BA) affected is possible. Thus 
the clinician can micro-monitor progression and titer treatments using 
ERPs like the P300 and at the same time be able to identify areas of the 
cortex that are involved which in turn allows them to anticipate which 
cortical functions might be compromised in the future.

Working memory and Information processing

Deficit in episodic memory is a key impairment seen in early AD. 
Working memory (WM) defined as “the capacity to hold information 
that is absent in mind for brief periods of time” [35,36]. The model 
consists of the central executive that controls and regulates the function 
of the phonological loop (articulatory loop and acoustic store), the 
episodic buffer and the visuospatial sketchpad; allocating attention 

to current relevant tasks and block out irrelevant tasks. In the WM 
model the three processes in memory formation include: information 
encoding, maintenance, and retrieval. Long-term memories are formed 
when information is transferred from short-term to permanent episodic 
representation by rehearsal [35,36]. Early AD memory complaints 
revolve around encoding, maintenance, and retrieval of information, 
deficits in the acquisition of new information (encoding) and retention 
or retrieval deficit in early AD remains equivocal [37-50],

P300 and Theories on P300

Neurocognitive functional connectivity markers like the P300 that 
use EEG/MEG/event related potentials) in combination with resting 
state or goal-driven oddball paradigms (tasks/attention/visual/auditory/
response inhibition Go/NoGO) to elicit and study brain function 
are sensitive [35-41,51-57]. They have the potential to demonstrate 
abnormal diffuse slowing, delay and suppression of responses to sensory 
and cognitive stimuli, identify pre-clinical AD, in treatment evaluation 
be it medication (eg.: effect of acetylcholinesterase inhibitors on AD 

Figure 1. Report summarizing the results of visual and auditory processing, attention, working memory/information processing evaluated using the P300 and resting EEG (eyes open and 
eyes closed) using BrainView NeuralScan by Medeia
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patients), neurofeedback or neurotherapy [35-47,51-63]. Among them, 
the P300 recorded using EEG machines like BrainView NeuralScan by 
Medeia (Figure 1) captures information processing memory, attention, 
executive function with the dopamine-mediated P300a playing a key 
role in frontal working memory (WM) function while medial temporal 
lobe generated P300b component, is norepinephrine-mediated [48,49]. 
P3a reflects orientation to a nontarget deviant stimulus, focal attention, 
engagement of attention, processing novelty executive function [50-
53,62-65]. Decline in P3a amplitude has been shown to correspond to 
decreased attention and executive function in mild AD indicative of its 
potential as a preclinical marker of AD and aiding clinicians in arriving 
at a more objective diagnosis and treatment titration [50-53,62-65].

Theories on P300 include i) stimulus evaluation hypothesis 
subsequently refuted [66-68], ii) Sokolov’s context-updating hypothesis 
environment i.e. updating occurs when relevant stimuli are presented 
[60,69-71], iii). context-closure hypothesis namely; first consolidation 
of stimuli is carried out to achieve a meaningful context and when this 
is followed by background stimuli i.e. the meaningful event is over. 
closure is initiated [70,72-74]. Other trivia to keep in mind include; 
P300 latencies and larger amplitudes reflect superior information 
processing with the converse indicating decline in cognitive function 
[60,70,74-78]. 60% of P300 morphology observed is individual specific 
and stable showing little variation over recording sessions/trials and 
with morphology, reaction times (RTs), 75% of speed and errors 
positively correlated with age [79-88]. Individual variations in P300 
mediated by arousal levels are guided by an individual’s traits, state 
(natural and biological eg. body temperature, sleep quality, exercise, 
food intake, drugs) and physiological properties (anatomical features of 
the corpus callosum or skull thickness) [86-88]. 

Systematic and meta-analytic reviews on P300

Figure 2 illustrates the relationship between the auditory P300 and 
age based on both a systematic and meta-analytic review of 75 studies 
(n=2811) [89]. Age-related degenerative effects include increase in 
P300 latencies and decline in amplitude [90,91]. This coupled with 
changes in white matter integrity influence executive dysfunction in the 
elderly [90,92,93]. To compensate for this decline older adults recruit 
other neural networks mediated in the prefrontal cortices to help meet 
the task as hand however once a particular threshold is crossed this is 
no longer possible and decline in cognitive performance can be seen 
(‘CRUNCH’ model) [85,94-108]. In a clinical trial on 103 with mild AD 
and 101 healthy controls (HC) between 60 and 90 years of age Cecchi 
et al. evaluated suitable ERP markers of mild AD. P3a amplitude (µV) 
differed significantly between healthy controls (HC, n=101) 5.88±0.19 
and those with mild AD (n=103) 3.63±0.20** following a distractor 
(white noise) stimulus. Latency (ms) did not appear to be significantly 
different between HC 417.3±2.4 and those with AD 419.8±3.0 [70]. 
Both P3b amplitude (µV) differed significantly between healthy 
controls (HC) 6.03± 0.20 and those with AD 4.42±0.20** following 
a target (2000 Hz) stimulus as well as latency (ms) HC 396.0±2.8, AD 
419.6±3.3* [109]. Pedroso et al. carried out a systematic review of 8 
studies (Caravaglios et al., O’Mahony et al., Lai et al., Yamaguchi et al., 
Golob & Starr, Bennys et al., Juckel et al. and Frodl et al.) that examined 
the auditory P300 amplitude and latency in AD [110-118]. Findings 
were that while P300 consistently showed an increase in latency in the 
elderly with AD, amplitude showed no such consistent pattern [110-
118]. One reason could be was a lack of standardization in the method 
used to elicit and capture the P300 [110-118]. However, another meta-

Figure 2. P300 and age [89] 
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Figure 3. Comparison of mean P300 amplitude (pV) and latency (ms) [133,136]

analysis and meta-regression carried out by Hedges et al. found P300 
amplitude was smaller in those with AD [24]. 

P300 and recording electrode

Among studies comparing healthy elderly and those with AD three 
found lower P300 amplitude and two, higher P300 latency differentiated 
healthy elderly versus those at risk of AD while another found 
amplitude and latency were better in individuals without subjective 
memory complaints than those with complaints [119-126]. One study 
found that parietal electrodes were best at identifying changes in P300 
patterns between controls, MCI and AD [125-128]. 

P300 and treatment (Rx) tracking

In six studies, three on allopathic medication, another on 
ayurvedic medication and two on exercise, the P300 was able to 
capture the influence of the respective therapeutic regimen on the 
cognitive function of elderly [129-134]. The elderly in the clinical trial 
compared to the placebo/ control group showed improvements in 
amplitude and latency during the respective treatments and return to 
baseline values once they were taken off them. Figure 3a illustrates the 
usefulness of the P300 in treatment tracking from a study carried out 
by Vaitkevičius A. 22 consecutive treatment-naïve AD subjects, 22 AD 
on donepezil (10 mg/day) [135], and 50 healthy controls were tested 
using neuropsychological testing and the auditory P300 was recorded 
at Fz, Cz and Pz. While P300 latency and amplitude improved in the 
AD on treatment (Rx) group. While comparison of mean P300 latencies 
(p<0.001) via the ANOVA was significant, both treatment-naïve AD 
and AD on Rx differed from control group (p<0.001), however when 
treatment-naïve AD and AD on Rx were compared there was no 

significant difference seen (p=0.49). Predictors of P300 latency via 
linear regression were age (p=0.019) and AD Rx status (p<0.001).

P300 and AD-related cognitive function

Lee et al. in a study of 31 HC and 31 with AD found that while P300 
amplitudes were lower the two study groups did not differ by latency 
[121]. They found the EEG recorded from the medial electrodes Cz 
and Pz correlated with performance levels on word list recognition, 
constructional praxis, and word fluency neuropsychological tests. 
Findings indicate that deterioration in memory, language and executive 
functions due to AD can be captured via the P300. Wang et al.’s study 
illustrated the use of the auditory P300 in the differential diagnosis 
of AD (n=27) and behavioral variant of frontotemporal dementia (bv 
FTD, n=30) with those with by FTD having significantly longer P300 
latency (Figure 3b) [136].

Auditory post-processing was found to be deficient in individuals 
with AD when compared to elderly controls. While this deficiency 
could not be explained by sensory gating, aging in general and auditory 
perception dysfunction; short-term memory (STM) capacity and 
executive control tasks instead point at possible deficits in memory 
encoding and/or cognitive control [137].

Visually-evoked (VEP) P300

Kuba M et al. looked at visually-evoked (VEP) P300 in 
electrophysiological studies that examined the effect of aging on visual 
cognitive processes [84]. Visual information processing was evaluated 
in the primary cortical visual areas and the secondary extrastriate 
motion processing visual cortex while cognitive function was examined 
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in the centroparietal and frontal brain cortex to be able to understand 
visual processing in the elderly. 150 volunteers, 15 to 85 years of age, 
male%=46% with fairly good visual acuity in at least one eye were 
included in the study. Pattern-reversal (black/white checkerboard) 
and motion related VEP (translating unidirectional linear motion and 
radial centrifugal or centripetal motion (‘‘expansion/contraction’’) were 
recorded from Oz, Pz, Cz and Fz and from OL and OR monocularly. 
Table 1 presents the results of the linear regression carried out to derive 
the equation predicting visual P300 amplitude (µV) and latency (ms) 
[84].

P300, AD, working memory and attention 
Another study on mild dementia of the Alzheimer's type (DAT, 

n=10) and age-matched controls (n=10) found no difference in P1, N1, 
and P2 (ERPs) however P300 amplitudes were significantly reduced, 
reaction time retarded, and increased behavioral errors were observed 
[138]. The inference was in mild DAT early sensory processing 
including pattern recognition is intact while higher-level processing is 
compromised.

The P300 signature of cognitive processes such as attention and 
working memory is positively correlated with the amount of attentional 
resources assigned to a given task and its latency is negatively correlated 
with latencies associated with superior cognitive performance [139]. 
It reflects cortical activity during incoming information when it is 
contextually processed and incorporated. While the P300 is a measure 
of stimulus evaluation time it is unrelated to both response selection 
processes and behavioral reaction time. P300 latency increases as 
cognitive capability decreases from dementing illness. 

Changes in the latency, amplitude, and topography of the P300 
correlate with cognitive impairment in AD. AD and MCI patients have 
increased P300 latency and decreased P300 amplitude compared to 
elderly indicating that it has the potential to identify preclinical changes 

in participants with and without a genetic predisposition to AD and 
who will convert to AD as well as to help evaluate of cholinesterase 
inhibitors treatment in dementia. P3a a frontocentrally maximal 
positive ERP marker of the attentional switching is generated by the 
prefrontal, cingulate, temporo-parietal, and hippocampal regions. AD 
patients have longer P3a latency and exhibit delayed orientation to 
deviant stimuli and the P3a is different in AD compared to vascular 
dementia. 

In a study on 200 middle‐aged construction workers Portin et al. 
linked P300 with attentional performance (with low rather than effortful 
working memory demands and updating), retrieval from memory 
stores and or MCI [140]. Li BY et al. carried out a study on 24 subjects 
with MCI and 22 normal controls (Figure 4). Neuropsychological tests, 
delayed match to sample task (DMS task), visual P300 at O1, O1, and 
Pz, and standard low-resolution tomography analysis (s-LORETA) 
were measured. P300 amplitude differed significantly (p = 0.025 
and p=0.038) for the retrieval epoch [141]. Positive correlation was 
found between P300 amplitude and memory load, language fluency 
and visual-spatial ability. Findings suggest that P300 might represent 
general cognitive ability, while P2 correlated with attention allocation 
via sLORETA and early AD/MCI are marked by retrieval deficit.

Figure 4. Early MCI: P300 and sLORETA images at P200 of aMCI versus controls illustrate central-executive-based on medial frontal gyrus retrieval deficit [141]

n Visual P300 (y-axis) Intercept (c), Slope (m), R2, p-value

Whole Group (n=150)
Latency (ms) 324.5, 2.005,0.601, p=0.001 

Amplitude (µV) 21.9, -0.161, 0.255, p=0.001
Males
(n=69)

Latency (ms) 336.9, 1.600,0.515, p=0.001
Amplitude (µV) 22.3, -0.175, 0.263, p=0.001

Female
(n=81)

Latency (ms) 314.7, 2.336, 0.676, p=0.001
Amplitude (µV) 21.7, - 0.151,0.250, p=0.001

Table 1. Linear regression co-ordinates predicting Visual Evoked P300 potential (VEP) 
[84]
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Conclusion
The criteria delineating the stages of progression from pre clinical 

to clinical AD remain to be fully characterized and defined, and earlier 
identification i.e. at the stage of early MCI would greatly augment the 
implementation of earlier and potentially more efficacious treatment, 
delay or even prevention of AD. More recent advancements in the field 
have led to a refocusing of efforts to emphasize identifying individuals 
at risk for AD development. The present article explored the utility 
of state-of-the-art new innovations including EEG machines such as 
the BrainView NeuralScan in identifying individuals at preclinical 
risk of AD, citing their unique capability to identify key hallmarks 
through such measure’s oddball paradigm elicited P300 morphology, 
amplitude and latency recording. While the ability of the P300 to aid in 
identifying those at risk of preclinical AD or MCI is well-documented, 
there remains a need to standardize paradigms used to elicit the P300, 
and while there are many studies on the auditory as well as the visual 
P300, a more comprehensive identification of P300 changes correlating 
to specific symptoms will need to be established within the context of a 
preclinical AD to maximize these devices’ full potential for diagnostic, 
prognostic and therapeutic-guidance benefit.
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