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Introduction
Severe sepsis often affects the brain. At admission, cerebral 

dysfunction may develop in up to 71% of septic patients. This condition 
is caused by systemic inflammation without brain infection and 
clinically characterized by mental processes impairment, disorientation, 
delirium or coma [1-3]. Clinical and pre-clinical researches have shown 
that sepsis is associated to the generation of pro- and anti-inflammatory 
cytokines [4-6], increase in the blood-brain barrier (BBB) permeability 
[4], impairment of cerebral microcirculation [7], oxidative stress [8], 
hippocampal apoptosis [9] long-term cognitive impairment [10,11] 
and depressive-like behavior [12]. However, studies have shown that 
prior mild sepsis has some modality-specific effects on the behavioral 
response to subsequent immune challenge [13-15]. 

In this context, some studies have associated the processes of 
neuroinflammation and depression [16-19]. Clinical studies have 
reported an increase in the inflammatory response during the course 
of major depression evidenced by an increase in pro-inflammatory 
cytokine levels in the serum [20,21]. Patients with major depression 
who are healthy seem to have activated inflammatory pathways, with 
an increase of pro-inflammatory cytokines, chemokines, acute-phase 
proteins and adhesion molecules [22-24]. Pro-inflammatory cytokines 
can enter and alter the brain function, even though they are released 
peripherally, modifying neurotransmitter metabolism, neuroendocrine 

Effect of mild sepsis on behavioral and biochemical 
changes on the stress-induced animal model of depression
Clarissa M. Comim1*, Napoleão C. Silva2, Paula Dias1, Bruna P. Mendonça2, Gislaine Z. Réus2, Tatiana Barichello2-4, Felipe Dal-Pizzol5 and 
João Quevedo2-4,6

1Research Group in neurodevelopment of childhood and adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, 
University of South Santa Catarina, Avenida Pedra Branca, 25 Pedra Branca, 88137-270 Palhoça, SC, Brazil
2Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
3Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center 
at Houston (UTHealth), Houston, TX, USA
4Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
5Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Avenida 
Universitária, 1105, Pinheirinho, 88806-000 Criciúma, SC, Brazil
6Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science 
Center at Houston (UTHealth), Houston, TX, USA

Abstract
The systemic inflammation that occurs during severe sepsis can be the cause of long-term consequences. Studies have demonstrated a possible correlation between the 
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were submitted to stressors for 40 days. To evaluate the efficacy of CMS induction anhedonia was determined as the amount of sweet food consumption. The levels 
of neurotrophins and oxidative damage were also evaluated in the hippocampus. It is observed that mild sepsis improved depressive-like parameters after CMS 
protocol associated with an increase of neurotrophins levels and a decrease of oxidative damage in the hippocampus. In conclusion, our data suggest that a previous 
mild systemic inflammation caused by the induction of mild sepsis could decrease consequences in the central nervous system (CNS) induced by CMS protocol.
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function through hyperactivation of the hypothalamic-pituitary-
adrenal (HPA) axis, neuronal plasticity, decrease of neurotrophin 
levels as BDNF and greater activation of the glutamatergic pathways, 
influencing the synaptic behaviors [25].

Studies demonstrate that a vulnerable brain can be more easily 
affected by responses associated with stress as a result of systemic 
inflammation [26-28]. In this context, some authors have shown that 
prior history of an immune challenge may affect central and behavioral 
responses to subsequent immune challenge, either leading to 
exaggerated responses via priming mechanisms or lessened responses 
via endotoxin tolerance [29-31]. Given the persistent upregulation 
of neuroinflammation following severe sepsis and that association 
between depression and neuroinflammation, we set out to enquire 
whether prior mild sepsis would impact on depressive-like parameters 
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(anhedonia, oxidative damage and neurotrophins levels) induced by the 
chronic mild stress (CMS) response in the CNS. We used the chronic 
mild stress (CMS) paradigm as a model of depression and characterized 
its effects with to long-term outcomes after mild sepsis.

Methods
Animals

Male Wistar rats (60 days old, weighing 220-310g, n=50) were 
obtained from the University of Southern Santa Catarina (UNESC) 
breeding colony. Animals were caged in groups of 5 with water and 
food ad libitum and were maintained on a 12 h light-dark cycle (lights 
on at 7:00 a.m.), at a temperature of 23°C. All experimental procedures 
were performed by the approval of the Ethics Committee of Animals 
Use from UNESC (Protocol 051/2014) and conformed to international 
regulations. 

Mild sepsis induction

Rats were subjected to cecal ligation and perforation (CLP) [31-
33]. Briefly, animals were anesthetized using a mixture of ketamine (80 
mg/kg) and xylazine (10 mg/kg), given intraperitoneally. Under the 
aseptic condition, a 3-cm midline laparotomy was performed to allow 
the exposure of the cecum with the adjoining intestine. The cecum was 
tightly ligated with a 3.0-silk suture at its base, below the ileocecal valve, 
and perforated once with a 20-gauge needle. The cecum was then gently 
squeezed to extrude a small number of feces from the perforation 
site, returned to the peritoneal cavity, followed by the closure of the 
laparotomy with 4.0-silk sutures. The rats were volemically resuscitated 
with normal saline (50 mL/kg subcutaneously) immediately and 12h 
after CLP. All animals were returned to their cages with free access to 
water and food. In the sham-operated group, the rats were submitted 
to all surgical procedures, but the cecum was neither ligated nor 
perforated. After surgery, both groups received 30 mg/kg ceftriaxone 
and 25 mg/kg clindamycin subcutaneously every 6h for a total of 3 
days. In the groups where the animals underwent sepsis, there was a 
33% mortality. Survivors rats were divided in four experimental groups: 
1) sham + control (n=10); 2) sham + CMS (n=10); 3) CLP + control 
(n=10) and 4) CLP + CMS (n=10). After 30 days of induction, the CMS 
protocol was carried out as described below.

Chronic mild stress protocol

Chronic mild stress (CMS) protocol was adapted from [34]. 
Animals were divided in control (n=20) and CMS (n=20) groups. 
Controls were kept undisturbed in their home cages during the 40 days 
of the experiment, receiving only ordinary care with daily supports 
of food and water. The stressors used in this protocol were: (a) 24h of 
water deprivation; (b) 24h of food deprivation; (c) flashing light for 3 h; 
(d) isolation (1-3 days); (e) 2h of restraint and (f) 2h of restraint at 4°C. 
Animals were submitted to stressors for 40 days. Stress was applied at 
distinct periods every day and offered in a random order in to minimize 
its predictability. 

To evaluate the efficacy of CMS induction anhedonia was 
determined as the amount of sweet food consumption. Briefly, rats 
were placed in a box (40x15x20 cm) divided into 9 equal rectangles. 
Ten Froot Loop(s) (Kellogg's®) were placed in one extremity of the box. 
In the training trials, rats were exposed to the environment for 3 min, 
once a day, during 5 consecutive days to become familiarized with the 
food. After, animals were exposed to 2 test sessions (3 min each, on 
consecutive days) during which the number of ingested Froot Loop(s) 
was measured. Anhedonia test took 7-days in total and it was realized 

after the finish to the CMS [34,35]. Immediately after the behavioral 
tests, the rats were sacrificed by decapitation and the hippocampus 
dissected and stored at 80°C.

Measurement of neurotrophins levels

For analysis of the neurotrophic factors, the total hippocampus 
were homogenized in phosphate-buffered solution (PBS) with 1mM 
phenylmethylsulfonyl fluoride (PMSF) and 1mM ethylene glycol bis(2-
aminoethylether)-N,N,N’N’-tetraaceticacid (EGTA). Homogenates 
were centrifuged at 10,000 g for 20 min. Then, supernatants were 
collected for quantification of neurotrophic factors levels. BDNF, NGF 
and GDNF levels in the hippocampus were measured by sandwich 
enzyme-linked immunosorbent assay using commercial kits according 
to the manufacturer's instructions (NGF and BDNF levels were assessed 
with a kit from Chemicon (USA) and GDNF levels was assessed with 
a kit from Biosensis (USA)). Total protein was measured by the BCA 
method using bovine serum albumin as a standard.

Oxidative damage

Oxidative damage in lipids was assessed by measuring the formation 
of thiobarbituric acid reactive species (TBARS) during an acid-heating 
reaction, as previously described by Draper and Hadley (1990). 
Hippocampus samples were mixed with 1 mL of trichloroacetic acid 
10% and 1 mL of thiobarbituric acid 0.67% and then heated for 30 min. 
TBARS levels were determined spectrophotometrically by measuring 
the absorbance at 532 nm. The Protein carbonyl was measured through 
determination of carbonyl groups content based on the reaction with 
dinitrophenylhidrazine (DNPH), as previously described by [35]. 
Proteins were precipitated by the addition of 20% trichloroacetic 
acid and were redissolved in DNPH. The absorbance was monitored 
spectrophotometrically at 370 nm. Protein content was measured by 
the BCA method using bovine serum albumin as a standard. 

Statistical analysis

The Statistical Package for the Social Sciences (SPSS) 18.0 and 
GraphPad Prism version 6.0 were utilized for statistical analyses. Data 
from brain oxidative damage, neurotrophins and anhedonia were 
expressed as mean and standard derivation, and analyzed by factorial 
analysis of variance (ANOVA), followed by Tukey post-hoc test. For all 
comparisons, p<0.05 was considered statistically significant.

Results
The parameters of anhedonia are shown in Figure 1. The animals 

of sham + CMS and CLP + control group demonstrated significantly 
decreased in Froots Loops intake when compared to the animals in 
the Sham + Control group. The animals of the CLP + Control group 
showed a decrease of Froots Loops intake when compared to Sham + 
Control animals. However, there was a significant difference in food 
intake between CLP + CMS and CLP + control groups, demonstrating 
possible protection. 

Figure 2 shows the levels of neurotrophins through analysis of 
BDNF (Figure 2A), NGF (Figure 2B) and GDNF (Figure 2C) in the 
hippocampus. Animals of sham + CMS and CLP + control groups 
showed a significant decrease in the BDNF, NGF e GDNF hippocampus 
levels when compared to the sham + control group. However, the 
animals of the CLP + CMS group showed an increase of BDNF, NGF e 
GDNF hippocampus levels when compared to CLP + control animals. 

Figure 3 demonstrates the results of oxidative damage in the 
hippocampus evaluating the protein carbonylation (Figure 3A) 
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Figure 1. Anhedonia test. The data is expressed by mean and standard derivation. *p<0.05 versus sham + control group; #p<0.05 versus CLP + control
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Figure 2. Neurotrophin levels in the hippocampus through evaluation of BDNF (2A), NGF (2B) and GDNF (3C). The data is expressed by mean and standard derivation. *p<0.05 versus 
sham + control group; #p<0.05 versus CLP + control

A B
Figure 3. Oxidative damage in the hippocampus through the evaluation of protein carbonylation (3A) and lipidic peroxidation (3B). The data is expressed by mean and standard derivation. 
*p<0.05 versus sham + control group; #p<0.05 versus CLP + control



Comim CM (2020) Effect of mild sepsis on behavioral and biochemical changes on the stress-induced animal model of depression

J Syst Integr Neurosci, 2020        doi: 10.15761/JSIN.1000238  Volume 7: 4-5 

and lipid peroxidation (Figure 3B). There was an increase of protein 
carbonylation and lipid peroxidation in the hippocampus of the sham 
+ CMS and the CLP + control groups when compared to the sham + 
control group. The animals the of CLP + CMS group showed a decrease 
of protein carbonylation and lipid peroxidation when compared to CLP 
+ control animals. 

Discussion
This study demonstrates that mild sepsis improved depressive-like 

behavior assessed by the anhedonia test after CMS protocol and this 
was related to an increase of the neurotrophins levels and a decrease in 
the protein carbonylation and lipid peroxidation in the hippocampus. 

Studies have shown that oxidative stress can be associated with the 
sepsis immune alterations and that inhibitory methods to treat sepsis 
consequences can be a new study pathway of the possible resolution. In 
this context, endotoxin tolerance has been shown to develop an immune 
response that is protective of sepsis. After the tolerance induction, the 
organism becomes resistant [36-38] and this tolerance represents an 
immune adaptation response to a first stimulus that cannot be solved 
by the innate response [39]. The mechanisms of tolerance have been 
associated with protection against tissue damages in the hepatic and 
renal ischemia/reperfusion [40,41] and hemorrhagic shock [42] in 
animal models. In these studies, there was increased resistance to 
stressful situations showing that tolerance is far more than altered 
inflammatory responsiveness.

During the development of sepsis, it is generally believed that 
excessive inflammation leads to organ dysfunction. In this study, mild 
sepsis per se causes a depressive-like behavior characterized by the 
decrease of sucrose intake associated with the increase of oxidative 
damage and the decrease of neurotrophins. However, the depressive-like 
animal model caused by CMS protocol is also associated with increased 
oxidative damage [43] and a decreased of neurotrophins levels [44]. In 
other inflammatory diseases, such as meningitis it can be observed the 
correlation between cognitive impairment and low levels of BDNF [45]. 
The animals submitted to mild sepsis and exposed to CMS protocol 
after 30 days did not show depressive-like behavior, oxidative damage 
or altered levels of neurotrophins in the hippocampus. It is possible that 
this protection is due to tolerance caused by previous sepsis and prepare 
an animal to deal with further stressors such as CMS protocol.

In a recent study, it was demonstrated that the previous stress 
caused by CMS can protect the brain against the systemic acute and 
severe stress elicited by sepsis [46]. In this study we found the opposite: 
that mild sepsis can be associated with a possible modulation of 
neurotrophin levels and oxidative damage in the hippocampus. This 
modulation can be related to the prevention of depressive-like behavior 
after the CMS protocol. It is known that major depression is associated 
with worse outcomes in critically ill patients [47-49]. However, this 
outcome was not evaluated in this study. 

It is important to note some limitations of this study [50,51]. We 
used a model of mild sepsis, which has provided clinically relevant 
information. However, it was not possible to determine if there is 
a “dose-dependent” effect. In a future study, other severity models 
should be used to detect more accurately a possible tolerance. Another 
important point is that this study did not fully explore a mechanism 
to elucidate the modulatory effects of systemic inflammation. It has 
however provided some evidence that this must include mechanisms 
associated with the control of oxidative stress and neurotrophins, but 
not inflammation [52]. Thus, it seems clear that somehow systemic 
inflammation related to mild sepsis modulates the brain response after 

stress promoted by the CMS protocol, and this may have an impact 
on the long-term brain dysfunction [53-55]. In conclusion, our data 
suggest that a previous systemic inflammation caused by the induction 
of mild sepsis could decrease the long-term depressive-like behavior 
and hippocampal oxidative damage associated with an increase of 
neurotrophin levels induced by CMS protocol.
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