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Abstract
Herpes simplex virus (HSV) infects epithelial cells and establishes lifelong latency in neuronal nuclei of the regional ganglion. Although active replication of HSV 
can be treated effectively with anti-HSV drugs, control of the reactivated HSV in the regional ganglion is a difficult task: Reactivated HSV in the trigeminal ganglion 
(TG) comes down via axon and infect the cornea Some patients eventually develop vision threatening herpetic stromal keratitis (HSK) that is the second leading 
cause of corneal blindness after trauma. Corneal herpes continues to cause blindness in developed countries. In this review, we describe initial attachment of HSV, 
entry and infection at peripheral epithelial cells, establishment of latency in neuron, reactivation and egress, corneal infection and immunopathology of HSK. We also 
discuss prevention and treatment of the disease. 

Herpes simplex virus (HSV) is a neurotropic virus
Worldwide, more than 1 billion individuals carry a latent HSV-1 in 

sensory neurons, predominantly in the trigeminal ganglion (TG) [1,2]. 
Primary infection of HSV-1 occurs in the orolabial mucosa without any 
symptom [1-3]. When overt disease is elicited, infected epithelial cells 
are eliminated rapidly by the host immunity (4). When the infected 
area is innervated with the trigeminal nerve, HSV becomes latent in the 
TG [5,6]. Axons consist of microtubules oriented toward the plus-end 
terminus. Entering viruses are transported retrograde via microtubules 
by dynein while kinesin conveys cargos anterogradely [7-9]. This 
initial movement develops lifelong HSV-1 latency in nerve growth 
factor (NGF) reactive A5+ neurons while HSV-2 in contrast is latent 
in KH10+ neurons [10,11]. The majority of infected neurons survive 
without apoptosis or necrosis so that sensitivity of the corneal surface 
remains unchanged during HSV latency in TG [12]. Reactivated HSVs 
are frequently detectable in tears, saliva or in secretions of the genital 
tract. These are major routes of virus spread and the source of primary 
infection of HSV [13]. A small population of people have developed 
recurrent diseases such as ulcers in the oral mucosa or lips, dendritic 
keratitis and genital herpes even if they were immunologically educated 
[14]. After repeated episodes, corneal herpes eventually develops to an 
immune mediated herpetic stromal keratitis (HSK). HSK is still an 
important cause of blindness in developed countries [15]. 

Clinical ocular HSV infection
The eye is an immunologically privileged site [16]. It strives to 

maintain transparency of the cornea to preserve the pathway of light 
to the retina. Microbial invasion on the corneal surface is prevented by 
washing out infectious agents with tears containing inhibitors such as 
lactoferrin, lysozyme, secretory IgA plus complement, type 1 interferon 
and suppressing factors on the growth of new blood vessels. These 
sustain inflammatory cell infiltrations [17-20]. 

However, primary ocular HSV-1 infection does occur. It causes 
acute kerato-conjunctivitis with hyperemia, edema and swollen 
lymphoid follicles in the conjunctiva which is often indistinguishable 
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from acute adenovirus infection [21]. Corneal ulcers extend to 
dendritic figures. It may spread to cause a geographic ulceration [21, 
22] (Figures 1 and 2).

Reactivated virus causes unilateral corneal herpes, although rarely 
it can occur bilaterally [22-25]. The cornea tries to maintain status 
quo, thus a few patients develop stromal haze namely herpetic stromal 
keratitis (HSK) after repeated episodes of recurrences [26]. HSK has 
been studied using the patient’s excised corneas obtained at corneal 
transplantations [26] and/or in experimental animal models [28-34]. 

Experimental HSV infection in vivo 
To infect the mouse or the rabbit cornea, a virulent RE or Mckrae 

strain of HSV [34,35] is instilled onto the scratched cornea. In mice, HSV 
replicate for 4-6 days in the cornea, then the virus disappears. Following 
a short quiet period [47], inflammatory cells infiltrate the corneal 
stroma at 8 to 10 days post infection (PI) with rapid neovascularization 
of the entire cornea proceeding to the complete loss of clarity of the 
visual axis. This immune-mediated pathogenesis has been extensively 
studied as a model of HSK [47, 48]. However, no experimental 
animal model of HSK has been developed as an outcome of repeated 
recurrences of reactivated HSV [32-34]. Two to three days PI of HSV 
on the mouse cornea, progeny viruses are transported to the TG via 
retrograde axonal flow [5,7,8]. After a short period of active growth in 
the TG, HSV establishes lifelong latency in the neurons with occasional 
episodes of reactivation [36]. In mice, spontaneous reactivation is rare 
[37-39]. Stimuli such as UV irradiation [40], heat [41], tattoo [42], 
chemotherapy and steroid [43], epinephrine iontophoresis [44], T cell 
and γIFN removal [45], psychological stress [46] etc. have been used to 
reactivate HSV, however, results are inconsistent in mice.
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Figure 1. Entrance and proliferation of HSV
HSVs enter epithelial cells following the regulated processes: attachment, binding fusion, and penetration into cytoplasm. Entered capsid and tegument proteins like VP16 trafficked toward 
the nucleus. Through the nuclear pore, viral genomes are injected into the host cell nucleus. Immediately, viral DNAs associate with host heterochromatin in the host cell nuclei. After de-
repressing process, HCF-1, Oct-1 and VP-16 start replication processes of HSV, namely immediate early α, early β and late γ genes transcriptions. Newly synthesized genome forms a rolling 
circle and cleaved into equimolar unit. It is packaged into a newly made capsid. Mature enveloped viral particles are bud from the cellular membrane. 
VP-16: virus protein 16, HCF-1: host cell factor 1, vhs protein: virion host shut off protein, PML body: promyelocytic leukemia body UL and US: unique long and short region, PAMPS: 
pathogen associated molecular patterns 

Figure 2. Egress of HSVs via the anterograde transport on axonal flow
Two egress processes have been observed. HSV capsids enveloped at inner nuclear membrane where HSV capsids obtain tegument proteins VP 16, UL11 and glycoproteins and released 
into the cytoplasm. They de-envelope at the outer nuclear membrane and the naked capsids released in the cytoplasm. They entered cytoplasmic membrane and mature with a secondary 
envelope. This mode of maturation and egress is called a married model. Another mod of egress is a separate model. Naked capsids with tegument protein are transported through the axon. 
Envelope with viral glycoproteins is transported separately and these components are assembled at the sites of egress where epithelial or fibroblastic cells are adjacent of nerve endings. Both 
models are observed, and the married model may be the dominant one. Long distance transport is depending on the kinesin motors. Microtubules composed of head-to-tail association of α 
and β tubulin transport virus to the cellular periphery. Reactivated virus transported to the peripheral tissues. In the cornea HSV DNA or viral proteins are detected but they are reactivated 
virus in trigeminal ganglion transported via axonal Ｆflow. 
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The rabbit establishes HSV latency in the TG after acute 
corneal infection. Reactivation is easier than the mouse; however, 
immunological analyses of the results in the rabbit are difficult [48]. 
Guinea pig is a model of genital HSV-2 infection with spontaneous 
reactivations [49]. When attenuated HSV-2 is inoculated intra-nasally, 
educated CD4+T cells migrate to the vaginal mucosa and secretory anti-
herpes IgA is produced locally by activated B cells [49,50]. Preventive 
effects are being investigated in several laboratories [51]. The effects of 
this immunization for corneal herpes has yet to be studied.

Entry of HSV into Cells 
 Viral envelope glycoproteins gB, gC, gD, gH and gI attach onto the 

plasma membrane [52-54]. These glycoproteins fuse at the lipid rafts 
and dynamin on host cell membrane [56]. HSV-1 gB and gC (HSV-2 
ligands are gB and gG) adhere to the cell surface glycosoaminoglycans 
[52-55]. Following entry steps, three gD receptors for HSV-1 [56]: herpes 
virus entry mediator (HVEM) [58,59]; nectin-1 and nectin-2 [60,61]; 
and 3-0-sulfated heparan sulfate [62]; are required [56,57]. Nectin-1 
is expressed on the corneal epithelium, conjunctiva, lens epithelium, 
ciliary body, iris, choroid and retina. PTLR α is an inhibitory receptor 
paired with an activating PTLR β receptor. The cellular ligand for both 
PTLRs is D99 expressed on activated T cells [63-65]. It deactivates 
NK cells and prevents HSV infected cell lysis. Glycoproteins gD and 
gB bind to cell surface receptors: non-muscle myosin IIA (NM-IIA) 
[63]; paired immunoglobulin-like type 2 receptor α (PILR α) [64, 65]; 
myelin associated glycoprotein (MAG) [66]; with membrane fusion of 
gH [57]. When NMHC-IIA, a subunit of NM-IIA [67], is expressed 
on the cell surface, gB is attached and fused with the cell membrane. 
NMHC-IIA expression on the corneal and conjunctival cell and 
NMHC-IIB on neuronal cell are scarce [67,68], however upon HSV 
entry, they are protruded into microvilli, filopodia [69] etc. by muscle 
myosin movement [68]. The corneal surface is washed with microbial 
inhibitors in tears [17-20] by constant blinking. In this environment, 
NM-IIA offers a way for the HSV infection to the cornea [67]. HSV 
also enters cells by endocytosis [70]. HSV-1 gH/gL binds to αvβ3-
integrin [56,71] and enters HeLa cells and CHO cells by endocytosis 
on lipid rafts [56]. HSVs are degraded by lysosomal enzymes released 
in endosome. Macrophages phagocytize HSV when pseudopods 
are extended by activated TLR2. HSV DNA in the phagosome are 
degraded by lysosomal enzymes and recognized by TLR 3 and 9 [28,72-
75]. Signals of activated TLR3 and 9 are transduced to the NF-κB [76]. 
When HSV passes through the cytoplasmic membrane, activated Ca++ 
ion [77], necessary for the transport of viral capsids to the nuclear pore, 
flows into the cytoplasm from the endoplasm [78]. Nearly 20 tegument 
proteins are dispersed into the cytoplasm. Inner tegument proteins 
complexed with capsid are transported to the nuclear pore by the 
motor dynein in microtubule [78]. Polyamines in the virion neutralize 
the negative charges of the viral DNA [79]. It is packed tightly in the 
capsid where the inner pressure reaches about 20 atmospheres [80]. 
Host nuclear factor importin β, nuclear pore complex proteins and 
UL36 serve to dock HSV capsids to the nuclear pore [81]. Viral genome 
is ejected into the nucleoplasm with the high inner pressure [80]. 

HSV infection and proliferation
In the nucleus, HSV DNA is linearized and circularized [82] before 

the viral protein production (Figure 1) [83,84]. When replicating, it 
forms a rolling circle and extended genomes are packaged into a newly 
made capsid after cleavage into equimolar monomeric units [84]. In the 
epithelial cell, 103-104 virus particles are produced in 8-10 hours [85]. 
Immediately after the entrance into the nucleus, promoter regions of 

HSV genome; α (immediate early), β (delayed early) and γ (late) gene 
associate epigenetically on the methylated histone H3-Lysine 9 and 27 
host heterochromatin [86,87] .

Sixty eight percent of the HSV-1 genome consists of (G+C) [88] 
Speckled protein of 100KDa (Sp100) binds hypo-unmethylated CpG 
islands [88-94]. In addition, the HSV genome triggers innate anti-
DNA responses with interferon α or γ by promyelocytic leukemia 
(PML) protein bodies in nuclear lamina or nuclear domain (ND10) 
[95,96] locating in the inter-chromosomal spaces or near the nuclear 
membrane. Upon HSV infection, ND 10 constituents are degraded, 
dispersed [97-101] and provided places for the latency or replication of 
HSV genome [102,103,104]. RING finger domain of ICP 0 [99] confers 
E3 ubiquitin ligase activity in its N-terminal region [100] and triggers 
the proteasome dependent degradation of PML and Sp100 [101]. PML 
proteins contain repressive cofactors Sp100, Daxx and ATRX [99]. 
Upon sensing foreign DNA, nuclear interferon inducible protein 16 
(IFI 16) binds to the transcriptional activators of viral genome and 
links to the heterochromatic suppression of HSV genome [104-106]. 
Depletion of IFI16 in epithelial cells or fibroblasts results in histone 
modifications of decreased H3K9me3, increased H3K4me3 of ICP4 
promotor and increased expression of IE genes [105,107]. They also 
increased RNA polymerase II loading on IE genes in HSV infected cells 
[108]. Corepressor element-1 silencing transcription factor (CoRest)/
REI-silencing transcription factor (REST) repressor complex consists 
of histone deacetylase (HDAC) and CoRest binds HDACs and Rest 
[109]. This complex functions to repress neuronal genes in non-
neuronal cells [110]. CoRest interacts ICP0 which colonizes with ND10 
in the nucleus and blocks the repressive action of HCLR [109,111]. 
In epithelial cells, ND10 disassembles in a few hours and dispersed 
in the nuclear microenvironment [112]. These heterochromatin 
repressions are counteracted by viral (VP16 and ICP0) and host cell 
factor 1 (HCF1), lysine specific demethylase1 (LSD1), octamer protein-
1(Oct-1), specificity protein 1 (Sp1) and GA binding protein (GABP) 
transcription factors. LSD1 plays a key role in the de-repression of α 
genes [113]. Alpha HSV-1 gene promotors contain binding sites for 
Oct-1, VP16 and a cellular protein designated HCF1 [114-117]. Oct-1 
and VP-16 bind to the promotor domains. VP16 assembles HCF1, Oct-
1 and lysin specific demethylase 1 (LSD1) changes heterochromatin to 
euchromatin. LSD1 is recruited by VP16 from cytoplasm to nucleus. 
ICP0 is dispersed in the cytoplasm. On productive infections of HSV-
1, after entering viral DNA into nucleus, HCF1, Oct-1 and other 
transcription factors reduce heterochromatin in an hour and activate 
transcription of α-genes [118]. With these de-repressing processes, 
viral immediate early genes (α genes: ICP-0, -4, -22, -27, -47, Us1.5) 
start to be transcribed. After α gene expression, β1→ β2 genes and 
γ1→γ2 genes are expressed in cascade fashion [1,119]. β genes produce 
enzymes for the DNA replication and γ genes make structural proteins 
and assembly of infectious viruses [1]. Immediate early protein ICP-0 
and ICP-4 activate β and γ gene expression [1]. ICP-0 is related to the 
transcription, interferon response, cell cycle and degradation of ND10 
[120]. It also plays a key role of reactivation from latency [120]. ICP-27 
inhibits mRNA translation by disrupting a splicing of RNA and helps 
transport viral mRNAs to the nucleus [121]. ICP-47 interrupts TAP 
conjugation of viral antigens with MHC at the endoplasmic reticulum 
and hinders transportation to the cell surface. Hence CD8+T cells can 
not recognize viral antigen and do not activate [122]. 

Establishment and maintenance of latency in neurons
When HSV enters the ganglionic neurons, viral lytic genes are 

repressed associating with the host cell heterochromatin and latency 
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3P and H27 are produced without viral protein synthesis similar to 
the viral α-gene products [158]. The synthesis of H1-5P, H3-5P, H6-3P, 
H7-5P, H16 and H26 require prior protein synthesis like those of viral 
β and γ-mRNAs [158]. In mouse studies, miR-155, a host’s miRNA, 
controls HSV latency and prevents spread of HSV from TG to the brain. 
It also suppresses zosteriform spread of skin lesion by intradermal HSV 
infection [159] LATs have been strongly implicated in the global control 
of HSV gene expression during latency through the post-translational 
modification (PTM) by methylation on histone H3 associated with viral 
promoters [160,161]. As described in the previous section, IFI16 is an 
innate sensor of the foreign DNA in the nucleus. In the cytoplasm, cGAS 
enzyme binds STING (Stimulator of Interferon Genes) and activates 
the IRF-3 signaling pathway [162-164]. STING and cGAS sense HSV 
DNA as foreign and synthesizes cyclic guanosine monophosphate-
adenosine monophosphate (cGAMP). Together with IRF3 and IFI16, 
cGAMP induces IFN-β in HSV infected cells [162-164]. 

When HSV infected, elicited stress leaks mitochondrial DNA 
(mtDNA) into the cytosol [165]. cGAS and STING sense the situation 
and elevate a type 1 interferon response [164]. Foreign DNA and 
viral proteins induce expression of IFNs, inflammatory cytokines and 
chemokines that recruit inflammatory immune cells to TG [132, 166]. 
Neutrophils are scarce in TG but monocyte, mast cells, macrophages, 
γδT cells are infiltrated and surround infected neurons [167,168]. γδT 
cells induce IFN-γ and activated macrophages secret NO and TNF-α 
[169, 170]. These inhibit viral growth. Eventually, circulating CD8+T 
cells and CD4+T cells, but not tissue resident T cells, accumulate in 
inflammatory sites in TG [133]. Neurons usually do not express 
MHC-I; however, in TG, neurons contain latent HSV [171]. These 
neurons express small amount of viral proteins such as gC, gB498-505 with 
MHC-I [133,135]. CD8+T cells recognize them with direct contact. 
In TG, LAT positive neurons are surrounded by primed CD8+, T 
cells at the periphery [170-172]. LAT positive neurons are protected 
from apoptosis by granzyme B released from CD8+T cells [135,173]. 
However, recent evidence suggests that CD11c+, CD8α+ monocytes play 
the major role to establish HSV latency and reactivation in neurons 
[174]. CD8+ T cells are eventually exhausted with programmed death-1 
(PD-1) expression with increased latency [175]. In neurons, autophagy 
is another important defense mechanism [176]. 

Reactivation and egress of the reactivated virus
Various stimuli in TG shift a micro-environmental balance to 

a favorable one for viral α gene expression rather than for cellular 
repression [160,177]. An in vitro study of HSV reactivation indicates 
that the initial step is induced following a removal of nerve growth 
factor (NGF) in culture medium [178-180]. In vivo, tyrosine kinase A 
(TrkA) receptor activates PI3-K (phosphatidylinoisitol 3-kinase) p110 
alpha catalytic subunit with NGF [181-183]. When NGF is withdrawn 
in culture medium, 3-phosphoinositide-dependent protein kinase-1 
(PDK1) is recruited to the plasma membrane and phosphorylates 
serine/threonine kinase Akt [179,180,183]. The NGF removal 
inactivates mTORC-1, blocks 4E-BP1 phosphorylation, suppresses cap-
dependent mRNA translation and induces HSV-1 reactivation [181]. 
External stimulations sensed by trigeminal nerve endings distributed in 
orolabial epithelia or ocular surface are immediately delivered to the TG 
neurons. When latent HSV DNAs in neurons sensed the reduced level 
of NGF, initial steps taken by silenced HSV DNA are different from a 
well-ordered cascade fashion replication [184,185]. They are controlled 
by infiltrated CD8+ T cells, NK cells and γδT cells [135,186,187]. 
IFN-γ is produced by them, then HSV replication is halted and there 
is a return to the latency (187). For the initial 24 hours, VP16/UL48 

associated transcripts (LATs) promotor and enhancer bind to the 
euchromatin [92,123]. To be functional in neurons, HSV DNA requires 
several days more than in epithelial cells for several reasons. First, 
the pool of histones is much less in the nucleus of sensory ganglionic 
neurons. Second, most of the HCF-1 is retained in the cytoplasm 
and is scarce in neuronal nuclei. Third, after the virus passes through 
the cytoplasmic membrane, envelope protein VP16 remains in the 
cytoplasm [114,124-126]. LATs expression in neurons reduce lytic 
gene expression during the acute phase of infection [127,128]. These 
characteristics of neurons contribute to HSV latency in neuronal cells. 
Some infected TG neurons produce progeny HSVs but do not cause 
apoptosis or necrosis [129,130]. The majority of infected ganglionic 
neurons survive harboring the circular HSV genome as episomes 
[69,131]. All these outcomes are supported by epigenetic regulations 
and innate or acquired immune responses [132-135]. Functioning 
neurons in TG are detectable by sensing stimuli on the corneal 
surface [12]. In mice, HSV DNAs in the TG are detected by in situ 
hybridization. They are distributed to neighboring cells via dendrites in 
all three branches of TG several days after corneal infection [136]. Any 
ganglionic neurons may harbor up to a thousand copies of HSV DNA 
(137). These results indicate that infiltrating CD8 T cells don’t induce 
apoptosis in TG [133-135, 137,138]. Release of exosomes from neurons 
containing mRNA, microRNA (miRNA), viral proteins, HSV DNAs 
and/or infectious viruses might contribute wide spread of HSV [139-
140]. Neutrophils break up these multiple apoptotic bodies containing 
live viruses. They are phagocytized by macrophages and spread virus to 
neighboring ganglionic neuronal cells [141,142].

During latency, HSVs transcribe stable two major antisense RNAs, 
latency associated transcript (LATs), from the unique region of the 
viral genome. HSVs also transcribe minor LAT only detectable with 
sensitive methods [138-139]. LAT is an 8.3kb primary transcript, which 
is spliced into stable 1.5 and 2.0 kb major LAT introns, as well as a 6.3 
kb minor LAT exon [143,144]. LATs stabilize latent HSVs [145,146] 
and downregulate genes required for a lytic infection. Discovery of 
the gene regulation by small RNAs (sRNAs) was swiftly extended to 
the study of herpesviruses. HSVs encode many miRNAs within or 
adjacent to the LAT locus. Two sRNA1 and 2 are encoded in the first 
1.5kb LAT. They inhibit productive infection in tissue culture [147,148]. 
sRNA2 suppresses ICP4 and increase HVEM expression on neurons 
[149] without affecting cognate mRNA levels [148]. In addition, LATs 
transcribed twenty-seven miRNAs [1,149-152]. Eleven miRNAs are 
expressed in the related region of LATs and their functions have been 
studied in neurons and epithelial cells [149,150]. Primary LAT gene 
encodes seven miRNAs, while the eighth is derived from a transcript 
upstream of the LAT promotor [153]. Less abundant potential miRNAs 
originating from LAT region are identified by deep sequencing. Most 
of these miRNAs suppress immediate early gene expression by their 
antisense sequences [152]. Six miRNAs: miR-H2-3P, H3-3P, H4-3P, 
H5-3P, H6-3P and H7-5P accumulate in latently infected neurons 
[149,150]. miR-H2 is complementary to ICP0 mRNA and regulates 
ICP0 expression [149,153]. It promotes latency by globally repressing 
lytic gene expression [154]. However recent results suggest that H2 
is less effective in inhibiting expression of ICP0 than neuronal host 
miR-138 which inhibits lytic gene expression in ganglia by targeting 
ICP0 mRNA [155,156]. Mutated miR-138 target sites increased α-gene 
expression in the infected eye and TG [155, 156]. H-4 downregulates 
neurovirulent ICP34.5 expression [157]. Except H4-3P, all miRNAs are 
expressed in infected cells in which progeny viruses are produced. miR-
H8-5P, H15, H17, H18, H26 and H27 accumulate during reactivation 
(158). miR-H3-3P, H13 and H27 enhance growth of HSV [158]. H5-
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translocates from the cytoplasm to the nucleus [124,188] and guides 
Oct-1 and HCF-1 [182,189]. Only in a small number of neurons, ICP0 
and ICP4 are expressed and degrade ND10 [190]. Progeny virions are 
made in cascade fashion and they are transported to the axonal termini 
[182]. Virus gene transcription does not follow with any specific kinetic 
schedules seen in the epithelial cells, but reactivated virus released to 
the peripheral tissues at 14 to 48 hours after stimulation signals received 
[182]. Most of the released viruses don’t produce overt disease. They are 
shed silently in the tears, nasal or genital secretions and/or saliva, but 
they may be a source of virus spread [191].

Following reactivation, newly synthesized concatemeric virus 
genome is processed as a rolling circle mode described in the previous 
section [1,192]. Reactivated virus spreads from TG to peripheral tissues 
via axons. As ganglionic neurons are bipolar cells, HSV can spread in 
both directions [136]. It can cause encephalitis in rare instances [8]. 
Initial innate immunity and subsequent specific immune responses 
prevents viral invasion in the brain but latent HSV can be detected in 
the neurons in the brain [193].

Packaged viral nucleocapsids in the nucleus bud through inner 
nuclear membrane where they obtain a primary envelop (Figure 2) 
[194]. During this primary envelopment, they have obtained tegument 
protein VP16, UL11 and membrane glycoproteins [195,196]. Egress of 
viral capsid through the nuclear pore by fusion of gB with outer nuclear 
membrane is dependent upon the viral proteins UL31, UL34 and Us3 
kinase [197]. At the outer nuclear membrane, capsids de-envelope and 
naked capsids are released into the cytoplasm [197]. The virions are 
processed for assembly and maturation in the cytoplasmic transport 
vesicles where capsids coated with tegument, then obtain a secondary 
envelope containing markers of trans-Golgi network (TGN) and viral 
glycoproteins [198]. Capsids move toward transport vesicles. UL36, 
UL37 and Us11 in the tegument interact with kinesin motors [199,200]. 
Hollow 25nm diameter microtubules composed of 13 protofilaments 
are tied in a head-to-tail association of α-tubulin and β-tubulin in the 
axon and used for a long distance transport of virus to the periphery 
[201]. They have a ‘plus’ end oriented towards the cellular periphery 
[202,203]. The cargo of virus particles egresses from axons with three 
viral envelope proteins gI, gE and Us9 [204]. Currently there are two 
models of transportation (Figure 2) [205]: “The married model” tells 
us that virus particles are assembled and enveloped in the neuronal 
cell bodies before entering axons and transported to egress at the 
peripheral distal ending [5]. “The separate model” indicates that naked 
capsids with tegument proteins but without envelop are transported 
through the axon. Envelope with viral glycoproteins are transported 
separately and these components are assembled at near the sites of 
egress [206]. Both models are observed, and the married model may 
be the predominant one. Virions are released into an extra-neuronal 
environment by fusion of transport vesicles with an epithelial cell or 
fibroblast plasma membrane. As described in the first section of this 
review, most of them cause asymptomatic shedding.

Immuno-pathogenesis of corneal herpes
 In HSK, infiltrated cells release angiogenic factors, EGF via IL-6, 

Robo 4, MMP-2 and MMP-9. Leaky new vessels grow from the limbus 
to the cornea ｌ center. Inflammatory cells infiltrate via the new vessels. 
Visual acuity is severely hampered by the cloudiness of the corneal 
stroma. This is called HSK [24-28] (Figure 3). 

The immunopathological nature of HSK is recognized by a ring-
shaped haze where IgM, IgG and IgA are deposited together with virus 
particles [207]. Viral antigens deposited in keratocytes induced anti-

HSV antibodies plus complement deposition or antibody-dependent 
cell mediated cytotoxicity (ADCC) with inflammatory cellular damage 
[17,207-209]. The antivirals combined with steroid keeps the affected 
cornea clear. This supports the immunological nature of the disease 
[210]. Rabbits showed immune complexes play a role in the pathogenesis 
of HSK [207]. In HSK, aberrant Th1 type responses mediate chronic 
immuno-inflammation [25,31,211]. When the mouse corneal 
epithelium is inoculated with HSV-1, it occasionally invades the upper 
corneal stroma until 4–5 days post infection (PI) [35]. During this initial 
phase of infection, cytokines (IL-1α, IL-1β, TNF-α, IL-6, IL-12, IFN-γ 
), chemokines (IL-8, MIP-1α, MIP-1β, MCP-1, MCP-2, RANTES.), 
and other mediators such as nitric oxide, COX 2, prostaglandin 
E2 are produced either by resident corneal cells or infiltrating cells 
[31,47,76,212-215]. Neutrophils and macrophages are detected in the 
active lesion. After a 3-4 days interval, robust immuno-inflammatory 
cells infiltrate in the stroma [31,35]. This infiltration consists of mainly 
CD4 T cells [47,216], which recognize HSV tegument proteins UL21 
and UL49 [217,218]. CD4 T cells, NK cells and Langerhans cells 
infiltrate via new vessels [31,219-222]. Nude or SCID mice [223,224] 
do not develop typical HSK. Regulatory T cells (Treg) were found to 
improve clinical signs in murine chronic HSK [225]. When regulatory 
CD4 T Foxp3+ cells are dominant over the CD4 Th1 cells, HSK lesion 
remains mild [226,227]. In current models, herpetic keratitis has been 
induced in the naïve mouse by the inoculation of a large amount of 
virus in the scarified cornea. However, the frequent virus reactivation 
does not occur in animal model of HSK [32,34,35,228]. Instead, in 
humans, repeated or continual recurrent episodes of virus reactivation 
from the ganglion are observed in a person who has sufficient innate 
and adaptive immunity. Further investigation requires to answer what 
viral or immune molecules drive stromal keratitis in the chronic phase 
without active viral replications in the current mouse model.

Human corneal buttons harbor HSV-1 DNA 
 Large amounts of bioactive CpG motifs in HSV DNA can induce 

NO and Th1 type cytokines like IL-6, TNF, and IFN- in vivo and in 
vitro [81,205,224]. Macrophages and dendritic cells recognize them by 
TLR-9 expressed on the endosome [213,229]. In the human corneal 
button or experimental mouse cornea, HSVDNA has been detected 
by in situ hybridization or conventional PCR [26,224]. Real time PCR 
demonstrated HSVDNA persistence in the corneal buttons obtained 
from HSK patients [26]. Viral antigen and antibody complexes are 
deposited in human HSK [207]. Toll-like receptors (TLRs) recognize 
pathogen associated molecular pattern (PAMPs) of HSV and trigger 
initial host responses [224,230-232]. TLR-3 is expressed in the 
endosome and the surface of corneal epithelial cells and fibroblasts 
and recognizes double stranded RNA produced during the process of 
HSV replication [233,234]. TLR-9 expressed in the endosome senses 
non-methylated HSV CpG [213]. HSV DNAs and/or HSV-IC have 
been detected in the mouse cornea long after the infectious virus 
has been cleared [215,235,236]. When human corneal epithelial cells 
(HCE) and human corneal fibroblasts (HCRF) were infected with UV-
inactivated HSV, transfected with HSV DNA or treated with HSV-IC, 
increased expression of TLR-3, -9 gene and IL-6 were observed in 
HCRFs [213]. Shortly after HSV-1 enters cells, virion shut off protein 
(vhs, UL41 gene) inhibits cellular RNA function [237,238]. However, 
IL-1 and IL-6 are still upregulated in the infected cells [239-241]. IL-6 
induces expression of vascular endothelial growth factor (VEGF) and 
potentiates neovascularization [221,242]. Transfection of HCRF and a 
human macrophage cell line THP-1 [213] with HSV DNA or treatment 
with HSV-IC produces VEGF. Production of MMP-9 was elevated in 
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THP-1 cells but not in corneal cells [233]. THP-1 cells may produce 
MMP-9 via TLRs because THP-1 cells inhibited MMP-9 production 
with anti-TLR-2, -3 and -4 antibody treatment [213,243]. IL-1β, IL-6 
and TNF-α also induce VEGF and MMP-9 expression in corneal cells 
and macrophages. Continued presence of HSV DNAs and HSV-ICs in 
the cornea may trigger inflammation and angiogenesis in HSK. VEGF 
and MMP-9 induction by IL-6 may be a therapeutic target via TLRs 
mediated cytokine pathways [222,244].

Dichotomy of innate immune responses in corneal 
herpes

 In mouse model, new vessels sprout on the cornea after HSV-1 
infection [245]. PMNs pass through these leaky vessels to the afflicted 
cornea [234]. PMNs are the prominent infiltrating cells in acute herpetic 
keratitis in patients and experimental animals [31,246]. Chemotactic 
factors, IL-8, Gro-α and granulocyte/macrophage colony-stimulating 
factor (GM-CSF) were released from corneal cells and macrophages 
infected with HSV-1 or treated with virus components. They attract 
and/or hold PMNs at the afflicted site, activates and prolongs survival 
of them [228,247]. PMNs cocultured with HCE, THP-1 cells or virus 
components produced highly reactive oxygen species (hROS) [228,247]. 
Such activated PMNs suppress HSV growth [228]. When they were 
overlaid onto the HSV-1-infected Vero cells, virus growth was inhibited 
[229]. Supernatants of the PMNs obtained after cocultured with HSV-
infected or virus components treated HCE or THP-1 cells, HSV growth 
was halted [229]. TNF-α released from the PMNs was not enough 
for virus inhibition. IFN-α, -β and -γ were not released from PMNs 
mixed with treated HCE and/or THP-1 cells supernatants. H2O2 was 
released from PMNs and THP-1 cells infected with Mckrae, transfected 
with HSVDNA or treated with HSV-IC. H2O2 inhibited HSV-1 
growth directly [229]. Myeloperoxidase (MPO) was also released by 
PMNs, contributing virus inhibition [229]. PMNs released NO in the 
supernatants when they were mixed with supernatants of HCE or 
THP-1 cells treated with HSVDNA and HSV-IC. Released NO was 
significantly higher concentration than those obtained from untreated 
HCE supernatant, however, it does not directly inhibit viral growth at 
the range of the concentrations obtained from treated HCE [229]. Low 
concentration of NO released from PMNs may convert naïve CD4 T 
cell to Th1 cells [248]. Neutrophils produce other factors like monokine 
induced by interferon γ (MIG). MIG induces and accumulates CD4+ 
Th1 cells [249]. When PMNs and CD4+ T cells were mixed and 
incubated with HCE supernatants treated with HSV components, MIG 
was released [229]. These local environments may contribute to the 
peripheral naïve CD4 +T cell differentiation to Th1 but further studies 
are required for this problem.

Prevention: Vaccine
Effective HSV vaccine has been tried including a nonvirulent virus, 

viral proteins, viral DNAs etc. [250-253]. However, none of them were 
effective in clinical trials. To obtain a better vaccine, delivery of effectors 
to the target is critical. 
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