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Introduction
Orthodontic displacement is a movement induced by exogenous 

forces applied to transform a malocclusion into an ideal occlusion. 
Orthodontic tooth movement (OTM) is a system that combines 
physiologic alveolar bone modification to mechanical strains with 
minor reversible injury to the periodontium [1]. Clinicians classify 
OTM into 3 phases: initial rapid progression caused by pressure force, 
delay a second phase with no obvious tooth movement, and at last a 
period of rapid tooth movement [1]. 

The maxillary bone may seem to be stable and unchanging, but 
really, it is continually subjected to a cellular turn over managed by 
the osteoblast and osteoclast cell lines. Alveolar bone remodeling is 
triggered by a release of calcitonin gene related peptide (CGRP) and 
substance P in the extracellular fluid that are vasodilators and stimulate 
plasma extravasation and leukocyte migration [2]. Alveolar remodeling 
is also a response to mechanical stresses on the bone tissue. From a 
microscopical point of view, osteoblasts are mononuclear bone-
forming cells observed at the bone surface while osteoclasts are bone 
cells with resorbing action that break down bone. Osteoblasts derive 
from the mesenchymal/mesodermal cells while osteoclasts originate 
from the hematopoietic/monocyte cells [3-4]. The latter are large 
multinucleate cells, formed by the fusion of multiple monocytes [5-6].

In the periodontal ligament (PDL) on the surface of lamina dura 
and in endosteal surfaces of the alveolar bone reside the osteoblasts 
and osteoclasts that are responsive to mechanical stresses [7]. OTM 
promotes osteoclasts bone resorption on the PDL compression side 
while osteoblasts cause bone apposition on the tension side, triggering 
compression side tooth migration [8-11]. Bone resorption occurs 
through osteoclastic activity, thus making irregular cavities in bone that 
later will be filled by newly formed bone owing to osteoblast activity [7]. 
Moreover, the application of these forces in the course of orthodontic 
displacement, set off a periodontal inflammatory reaction to PDL that 
activates in turn, a biological response with synthesis and release of 
prostaglandins, cytokines, growth factors, neurotransmitters, colony-
stimulating factors that regulate cellular activities in the compression 
vs. tension areas within the PDL promoting a net outcome of bone 
resorption at the compression side and bone formation at the tension 

Abstract
Aim: The present study aimed to verify the histone MacroH2A.1 immunohistochemical expression and localization after orthodontic force application on rat 
maxillary molars to deep insight the molecular mechanisms involved in tooth movement. 

Materials and Methods: Sixteen Sprague-Dawley rats were used as previously described. Tooth movement was induced, and rats were then killed. Molar-bearing 
segments of alveolar bone were cut from each side and further fixed in paraformaldehyde, decalcified, and then dehydrated. Specimens embedded in paraffin, 
including the crestal areas mesial and distal to the maxillary molars, were cut by microtome and processed for immunohistochemistry to detect macroH2A.1 
according to literature protocols.

Results: On the compression side, MacroH2A.1 was strongly immunostained in the spindle round cells of PDL, in cementoblast cells of root teeth and osteoclasts 
of alveolar bone. Sections also showed vacuolization of odontoblastic layer near to the pulp tissue. Alveolar bone evidenced the presence of marrow spaces. On the 
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scattered cell immunolabelling. Negative controls showed no immunolabelling.

Conclusions: The results of the present study demonstrated overexpression of MacroH2A.1, on the compression side, after orthodontic force appliance suggesting a 
role of this histone in the remodeling of alveolar bone nonetheless further molecular analysis will be helpful to understand the specific involvement of MacroH2A.1 
in orthodontic mechanical stress.
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side [1,12-14]. In this context, the PDL plays an essential role in the 
relationship between the dental root and the surrounding alveolar bone 
and represents a basal element for the biological changes [15].

Previous studies showed that the PDL is compressed on 3rd day of 
force application, and from day 7 to 14, resorption lacunae are detected 
in the pressure side alveolar bone. Osteoclasts emerged along the 
alveolar bone edge starting from the 3rd day and then increased in the 
alveolar resorption craters [16-17].

MacroH2A is a unique histone variant, with a C-terminal non-
histone domain, with a crucial role regarding chromatin domain 
and gene transcription, and it presents different isoforms [17]. 

In particular, in vertebrates, there are two MacroH2A isoforms, 
MacroH2A.1, and MacroH2A.2, which are encoded by different genes 
[18-19]. MacroH2A.1 is due to the presence of a C-terminal macro 
domain, and it performs an important role in transcription regulation, 
DNA replication, DNA repair, chromosomal stability, and stable X 
chromosome inactivation. DNA accessibility is established through 
a series of post-translational histones alterations, called histone code, 
and nucleosome remodeling [20]. The histone variant macroH2A.1 
represents a barrier to the cellular reprogramming process. It obstructs 
the binding of transcription factors and inhibits with SWI/SNF 
remodeling activity (Switch/Sucrose Non-Fermentable), inducing 
a hypoacetylated chromatin state. Also, isoform macroH2A.1 ties 
ADP-ribose and O-acetyl-ADP-ribose and may be implicated in ADP-
ribose-mediated chromatin modulation [21]. 

Although several lines of evidence suggest that at least some 
histone modifications may affect bone remodeling in tumor metastasis, 
actually, there is no data about histone variants expression during 
bone remodeling due to the application of orthodontic stress. Even if 
the molecular mechanisms that regulate tooth movement are studied 
mainly, MacroH2A contribution has never been considered in the 
alveolar bone. Thus, the purpose of our work was to verify MacroH2A.1 
immunohistochemical expression and localization during an in 
vivo orthodontic force application to deep insight the molecular 
mechanisms involved in tooth movement.

Materials and methods
Study sample

Sixteen Sprague-Dawley rats (weighing 120–200 g) were examined 
in the current investigation and according to previous experimental 
techniques [22]. Tooth movement was caused by putting elastic bands 
between the maxillary first and second molars [23-24]. This treatment 
generates compression and tension areas in the alveolar cavity around 
molar roots and produces a force of about 5 Newton [25].

The elastic bands were inserted for 24 h using anesthesia based on 
ketamine (90 mg/kg) (Abbott Laboratories, NorthChicago, IL) and 
Xylazine.

A fixative solution of 4% paraformaldehyde, pH 7.2 was used by 
intracardiac perfusion in order to kill rats. After perfusion, the maxillae 
were cut free. Molar-bearing segments of alveolar bone were dissected 
from each side and besides fixed in isolate containers, including 50 ml 
of 4% paraformaldehyde overnight at 4°C. Specimens were decalcified 
in 10% ethylenediaminetetraacetic acid (EDTA) (Sigma, St. Louis, 
MO), pH 7.2, for 6–8 weeks and then dehydrated through ethanol rising 
concentrations. After, the specimens were embedded in paraffin wax as 
from regular protocol. Maxillary molar sections, 4–6-mm thick, were cut 
by a microtome sidelong, including mesial and distal crestal tooth areas. 

Histochemistry

Osteoclasts were identified by histochemical staining with Tartrate 
resistant acid phosphatase (TRAP) which is a well-established marker 
for the chondro-/osteoclast lineage. Sections were firstly deparaffinized, 
washed in PBS and incubated, for 30-40 min at room temperature, with 
a solution containing 50 mM sodium acetate (pH 5.2), 0.15% Naphtol-
AS-TR-phosphate, 50  mM sodium tartrate, and 0.1% Fast Red T.R. 
(Sigma Aldrich Chemie Gmbh, Taufkirchen, Germany), and these 
processes have allowed to show TRAP activity. Finally, the sections 
were washed in PBS and counterstained.

Immunohistochemistry

Tooth tissue sections were deparaffinized, rehydrated, and 
treated for MacroH2A.1 immunohistochemistry detection according 
to literature protocols [24]. Slides were incubated with 0.3% H2O2/
methanol in order to inhibit endogenous peroxidase activity and then 
washed for 20 min with phosphate-buffered saline (PBS; Sigma, Milan, 
Italy). Sections were heated (5 min x 3) in capped polypropylene slide-
holders with citrate buffer (10 mM citric acid, 0.05% Tween 20, pH 
6.0; Bio-Optica, Milan, Italy), using a microwave oven (750 W). Then 
slides were incubated for 1 hour, with the primary antibody with 5% 
bovine serum albumin (BSA; Sigma, Milan, Italy) in PBS in a humid 
chamber. BSA acts as a blocking agent to prevent non-specific binding 
of the antibody. After, sections were incubated with a rabbit polyclonal 
macroH2A.1 (Ab-1, clone VIIIA2, Neomarkers, Lab Vision, Fremont, 
CA, USA), at a 1:20 working dilution, overnight at 4°C. Immune 
complexes treated with a biotinylated link antibody were identified with 
peroxidase-labeled streptavidin, both incubated for 10 min at room 
temperature (LSAB+ System-HRP, K0690; Dako, Glostrup, Denmark). 
The immunostaining was visualized by 2 minutes incubation in 0.1% 
3,3'-diaminobenzidine and 0.02% hydrogen peroxide solution (DAB 
substrate Chromogen System; Dako, Denmark). Sections were then 
counterstained with Mayer’s hematoxylin (Histolab Products AB, 
Göteborg, Sweden) mounted in GVA (Zymed Laboratories, San 
Francisco, CA, USA) and observed and photographed with an Axioplan 
Zeiss light microscope (Carl Zeiss, Oberkochen, Germany) and a 
digital camera (AxioCam MRc5, Carl Zeiss, Oberkochen, Germany), 
respectively. Positive controls consisted of tissue breast carcinoma. 
Negative controls were labeled as described above except that the 
incubation with the primary antibody was replaced by incubation in 
PBS alone. 

Evaluation of immunohistochemistry 

MacroH2A.1 immunostaining was identified as either negative 
or positive. Immunohistochemical positive staining was considered 
as the presence of brown chromogen visualization on the margin 
of the hematoxylin-stained cell nucleus, distributed within the cell 
membrane and/or cytoplasm by light microscopy observation [26]. 
Seven fields, arbitrarily chosen, were examined for morphometric and 
densitometric analysis. The percentage of areas showing MacroH2A.1 
immunostaining was expressed as % positive, dark brown pixels 
of the analyzed fields. An image acquisition software (AxioVision 
Release 4.8.2 - SP2 Software, Carl Zeiss Microscopy GmbH, Jena, 
Germany) was used to evaluate the intensity staining level exhibited 
as densitometric count (pixel2) of positive, dark brown pixels of the 
analyzed fields. Results were expressed as mean ± standard deviation 
(SD). The statistical significance of the data was thus achieved. Digital 
micrographs were performed using the Zeiss Axioplan light microscope 
(Carl Zeiss, Oberkochen, Germany) with a digital camera (AxioCam 
MRc5, Carl Zeiss, Oberkochen, Germany).
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Statistical analysis 

Statistical analysis was performed using SPSS software (SPSS® 
release 16.0, Chicago, IL, USA). Data were analyzed with the 
Kolmogorov-Smirnov test. Parameters were regularly distributed. The 
unpaired t-test was used to compare the two means. P-values of less 
than 0.05 were reputed significantly relevant. Data are presented as 
mean ± SD [27].

Results 
In the present study, we considered the histological, histochemical, 

and immunohistochemical changes stimulated by orthodontic 
tooth movement. The latter creates compression and tension areas 
with the following histological features: fibroblasts and fibrillar 
collagen were radially oriented, the PDL fibers appear narrow and 
extremely compacted with fibers disoriented both on the tension and 
compression sides, polynucleate osteoclast cells were also detected 
only on the compression side. Herein, a moderate vacuolization of 
the odontoblastic layer (green arrow) near to the pulp tissue, with 
MacroH2A.1 cells immunolabelling (black arrow) (Figure 1). The 
alveolar bone showed the presence of enlarged marrow spaces, on 
the compression side within scattered immunolabelled cells (black 
arrows) (Figure 2). The % of stained areas by MacroH2A.1, and 
densitometric count (pixel2), exhibited by dark brown pixels of the 
tested fields, in the compression side, were considered and compared 
to MacroH2A.1 immunoexpression of the tension side (Chart 1). 
From densitometric count, immunoexpression of MacroH2A.1 on 
the PDL compression side was strongly demonstrated (red color), 
as in the alveolar bone and in particular in osteoclastic cells (black 
arrows) (Figure 3). Moreover, densely and packed narrow PDL round 
cells were immunodetected on the compression side showing a strong 
MacroH2A.1 immunoexpression with a high % of stained areas respect 
to the tension side (p0.001) (Figure 4). Negative controls showed no 
immunolabelling.

Discussion
In this study, we demonstrated that MacroH2A.1 plays an important 

role in the response of alveolar bone and PDL to the orthodontic force 
applied for tooth movement. Tissue reaction on the compression side, 

Figure 1. MacroH2A.1 immunoexpression on the compression side of tooth section. Green 
arrow indicate a moderate vacuolization of odontoblastic layer (OB), black arrow evidence 
MacroH2A.1 odontoblasts immunolabelling. Amplification: 40X; scale bar: 20μm. 
113x85mm (300 x300 DPI)

Figure 2. MacroH2A.1immunolocalization on the compression side of the alveolar bone 
(AB), black arrows evidence scattered immunolabelled cells. Amplification: 40X; scale 
bar: 20μm. 113x85mm (300 x300 DPI)

Figure 3. Osteoclastic cells (black arrows) immunoexpression of MacroH2A.1 on the PDL 
compression side (red color). Amplification: 40X; scale bar: 20μm. 113x85mm (300 x 300 DPI)

Figure 4. MacroH2A.1 immunodetection on the compression side. Amplification: 20X; 
scale bar: 20μm.118x84mm (300 x 300 DPI)
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guided by cell-to-cell interaction with osteoblasts, and finally fusion 
into multinuclear osteoclasts [38-40]. The percentage and activity of 
mature osteoclasts regulate the rate at which a tooth can move through 
the bone [41-42].

Moreover, our results evidenced a moderate MacroH2A.1 
immunoreaction of odontoblastic cells of the compression side, 
probably due to the activation of the reaction dentin (tertiary dentin) 
during the appliance of force suggesting a role of this histone also in the 
dentin layer of tooth traction side. 

In conclusion, MacroH2A.1 is expressed during the early phases of 
OTM, especially on the compression side than to the tension side of the 
PDL. This data could be relevant to understand the biological reactions 
better and limit the undesirable effects following an orthodontic force, 
improving the physiology of tooth movement. 
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