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Abstract
Deletion of peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1), a rotamase that modulates effects of proline-directed serine/threonine phosphorylation, 
increased lung inflammation caused by E. coli endotoxin (lipopolysaccharide, LPS) in mice. Here, the effect of roscovitine, an inhibitor of several proline-directed 
cyclin-dependent kinases, on LPS-induced inflammation was determined.  LPS (1.5 mg/kg, ip) increased pulmonary neutrophils in PIN1 knockout more than in 
wildtype mice.  Cyclooxygenase-2 expression was elevated in wildtype and knockout mouse lung, and to a greater extent in knockouts. Roscovitine (70 mg/kg, ip, 
30 min before LPS) inhibited the accumulation of neutrophils and induction of cyclooxygenase-2 in PIN1 knockout mouse lung.  The drug did not reduce the more 
moderate level of inflammation caused by this dose of LPS in wildtype mouse lungs, or the greater inflammation caused by a higher dose of LPS (6 mg/kg) in wildtype 
mice.  The results indicate roscovitine inhibits LPS-induced lung inflammation in mice lacking PIN1.  CDK antagonists might be able to limit endotoxin-associated 
inflammatory responses where PIN1 function is reduced.
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Introduction
Lungs are sensitive to inflammatory actions of lipopolysaccharide 

(LPS) of Gram-negative bacteria.  LPS increases vascular permeability 
leading to edema, induces endothelial adhesion molecules, and causes 
neutrophils to accumulate in lung.  These events eventually compromise 
respiratory function [1].  

Previously, it was found that knockout of peptidylprolyl cis/trans 
isomerase, NIMA-interacting 1 (PIN1) increased the sensitivity of 
mouse lung to LPS [2]. PIN1 acts specifically on phosphorylated (p) 
serine (S) or threonine (T)-proline (P) motifs in proteins [3,4]. Catalysis 
of the otherwise sterically-hindered rotation of the p(S/T)-P bond by 
PIN1 allows phosphorylated proteins to adopt different conformations. 
PIN1 is the only mammalian enzyme known to have this function. As a 
result, PIN1 can affect all aspects of protein function [3-11].  

LPS activates several protein kinases that target S/T-P motifs in 
proteins [12-14]. One group of proline-directed kinases is the cyclin-
dependent kinase (CDK) family [15]. At least one CDK, CDK5, is 
activated by LPS in murine hippocampus [13].  Modulation of CDK 
activity would presumably affect the pool of PIN1 substrates, some 
of which may contribute to inflammatory actions of LPS.  The CDK-
inhibitor, roscovitine, antagonized CDK5-dependent phosphorylation 
of hippocampal Tau protein in LPS-treated mice suggesting that CDK 
inhibitors have anti-inflammatory activity [15].  In support of this, 

roscovitine also antagonized induction of cyclooxygenase-2 (COX2) 
and inducible nitric oxide synthase (iNOS) by LPS in RAW264 
macrophages [16,17].  

Roscovitine inhibited pulmonary effects of responses to 
Gram-positive agents and ventilator-induced lung injury [18,19]. 
Whether roscovitine affects Gram-negative E. coli LPS-induced lung 
inflammation is unknown.  Given the influence of PIN1 knockout in 
LPS-treated mice, the effect of roscovitine in wildtype (+/+) and PIN1-
knockout (-/-) mice was investigated here. 

Materials and methods
Reagents

Phosphate-buffered saline (PBS) and tris-glycine gels were from 
Invitrogen Corporation (Grand Island, NY).  Bradford reagent, 
ß-mercaptoethanol, dithiothreitol, dimethylsulfoxide (DMSO), 
deoxycholic acid, phenylarsine oxide, phenylmethylsulfonyl fluoride, 
NaF, and E. coli LPS, serotype 0111:B4, were obtained from Sigma 
Chemical Co. (St Louis, MO). R-Roscovitine was purchased LC 
Laboratories (Woburn, MA). Bromphenol blue, ethylenediamine 
tetraacetic acid, sodium dodecyl sulfate, NaCl, Na3VO4, NaF, Tween 
20, and Tris-base were obtained from Fisher Scientific (Fair Lawn, NJ). 
Aprotinin, leupeptin and carbobenzoxy-valyl-phenylalaninal were 
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purchased from Calbiochem (La Jolla, CA). 

Antibodies used were against COX2, from Cayman Chemical 
Co. (Ann Arbor, MI), myeloperoxidase (MPO), from Santa Cruz 
Biotechnology (Santa Cruz, CA), α-tubulin from Cell Signaling 
Technology (Danvers, MA), and PIN1, from R&D Systems 
(Minneapolis, MN).  Enhanced chemiluminescence reagents and triton 
X-100 were from Pierce (Rockford, IL). Goat anti-mouse and -rabbit 
antibodies conjugated with horseradish peroxidase were purchased 
from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA) 
and Santa Cruz Biotechnology (Santa Cruz, CA).  

Mice and treatments

C57Bl/6 +/+ and PIN1 -/- mice [20] were used in congruence with 
the Guide for the Care and Use of Laboratory Animals from the U.S. 
National Institutes of Health under a protocol approved by the Ohio 
State University Institutional Animal Care and Use Committee. Mice 
were injected ip with DMSO or roscovitine in DMSO (70 mg/kg). After 
30 min, PBS or 1.5 or 6 mg LPS/kg was administered ip. Tissue was 
harvested after 6 h.  Mice were euthanized, lungs were collected and 
stored frozen until use. 

Western blotting 

Tissue was homogenized in lysis buffer (50 mM Tris, pH 7.5, 250 
mM NaCl, 1% Triton-X-100, 20 mM NaF, 5 mM EDTA, 4 mM NaVO4, 
1 mM phenylarsine oxide, 30 µg aprotinin and leupeptin/ml, 25 µM 
carbobenzoxy-valyl-phenylalaninal, 1 mM phenylmethylsulfonyl 
fluoride, 0.01% deoxycholic acid) and sonicated. Protein was measured 
[21] and samples were denatured as described previously [2]. Samples 
were separated by SDS-polyacrylamide gel electrophoresis, transferred 
to nitrocellulose, and incubated with primary antibodies and 
horseradish peroxidase-conjugated secondary antibodies. Enhanced 
chemiluminescence was used to expose film.  Images were produced by 
transilluminating scanning. Signal intensity was determined with NIH 
Image J software, and divided by value for α-tubulin in each sample, as 
described before [2].  

Data analysis

Student’s t-test or analysis of variance with correction for multiple 
comparisons was used to analyze results [22].

Results
LPS at 1.5 mg/kg increased lung neutrophils, indicated by MPO, 

in PIN1 -/- mice and +/+ mice (Figures 1 and 2). The increase was 15-
fold in -/- and 5-fold +/+ lungs.  Roscovitine reduced the accumulation 
of MPO by 42% (to 8.9-fold above saline) in LPS-treated -/- mice.  
However, roscovitine did not significantly reduce the lower level of 
MPO in LPS-treated +/+ mice. In addition, roscovitine did not inhibit 
the response in +/+ mice treated with a higher dose of 6 mg/kg LPS, 
where MPO increased to 1960 + 470% (mean + SE) of saline, and 2589 
+ 806% of saline with roscovitine pre-treatment (not different). 

LPS increased lung COX2 expression in +/+ and -/- mouse lung 
(Figure 3). The increase was 1.8 times greater in -/- mice. Roscovitine 
also reduced the high level of COX2 in -/- lungs, but did not reduce the 
lesser COX2 expression in +/+ mouse lung. 

Discussion
Previously, we found that PIN1 knockout increased the sensitivity 

of mice to LPS-induced lung inflammation (Liu et al., 2014).  This 

suggested that PIN1 normally limits the sensitivity of lungs to the 
inflammatory actions of LPS.  The presumption is that PIN1 modulates 
signals generated by LPS and mediators. 

PIN1 acts on proteins containing pS/T-P motifs. The effects of 
deleting or manipulating PIN1 on cell function are complicated by 
the existence of many proteins with pS/T-P in cells. Furthermore, 
PIN1 can modulate protein function, interaction with other 
biomolecules, and susceptibility of proteins to other enzymes [23]. 
PIN1 appears to facilitate Toll receptor 9 signaling, at least in part 
by maintaining interleukin 1 receptor associated kinase 1 function, 
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Figure 1. Western blots of PIN1 in wildtype (+/+) and PIN1 knockout (-/-) mice.  Mice 
were treated DMSO or roscovitine (70 mg/kg, ROSC) and then with saline or 1.5 mg LPS/
kg.  Proteins were extracted 6 h later and western blotted for PIN1 and α-Tubulin.  Three 
mice were treated with DMSO and saline and 5 mice were treated with LPS and saline or 
LPS and roscovitine for each genotype. The upper set of PIN1 and α-Tubulin blots has -/- 
samples except for one +/+ sample, placed with them as a positive control.  The lower set 
of blots blot has +/+ samples except for one marked -/-.  The numbers on the left show the 
position of molecular weight markers in kDa. The protein detected is indicated on the right.

 

Figure 2.  Effect of LPS and Roscovitine on MPO in +/+ and -/- mice.  A) Lung tissue from 
mice treated as in figure 1 and western blotted for MPO.  Upper blots are -/- samples except 
for one +/+ sample as marked.  Lower blots are +/+ samples except for one marked -/-.  
Molecular weight markers are indicated on the left. B) Image analysis of blots in A.  Three 
mice were treated with DMSO and saline and 5 mice were treated with LPS and saline or 
LPS and roscovitine for each genotype. Bars are the mean ratio of MPO/α-Tubulin signal 
as a percent of saline-treated group + SE. *:p<0.05 for comparison with 0 mg LPS/kg and 
+: p<0.05 for comparison with -/- mice treated the same way. x: p<0.05 for comparison 
between DMSO- and roscovitine-treated -/- mice that received LPS.
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coli here.

As mentioned above, PIN1 knockout increased the sensitivity 
of C57Bl/6 mice to LPS-induced lung inflammation [2].  There were 
increases in lung neutrophils, as indicated by MPO levels (Figure 2). 
COX2 was also increased (Figure 3). Interestingly, roscovitine limited 
the increases in -/- mice to levels seen in +/+ mice treated with LPS. 
However, roscovitine did not reduce the moderate levels of MPO and 
COX2 in +/+ mice any further.  The inhibitory effect of roscovitine was 
not simply due to the higher response in -/- mice since a higher dose of 
LPS further increased neutrophil accumulation in +/+ mice which was 
not antagonized by the drug. 

It is possible that the excess inflammation in PIN1 -/- mice is 
mediated by pathways or events that differ from those in +/+ mice, 
and that these pathways are sensitive to roscovitine. Although the 
pulmonary activity of roscovitine-sensitive CDKs is unknown, PIN1 
may directly affect kinases, including some of these CDKs, as well as 
phosphatases, that might regulate the balance of phosphorylation and 
dephosphorylation of specific proteins [28-30]. Thus, deletion of PIN1 
could lead to a cellular pS/T-P phosphoproteome that is maintained by 
CDKs. A lack of PIN1 might also limit phosphatase activity towards 
proteins that are phosphorylated by roscovitine-sensitive kinases. 
These proteins may contribute to the elevated inflammatory reaction in 
-/- mice.  An examination of the effect of LPS and PIN1 on activities of 
specific CDKs in lung may suggest specific new targets for therapeutic 
development.

There is accumulating evidence that polymorphisms, including 
some in the PIN1 promoter, and population variability in PIN1 
expression and function are associated with cancer, rheumatoid 
arthritis, Alzheimer’s disease, some actions of PIN1 modulating agents, 
and other conditions [31-33]. The results here suggest that proline-
directed kinase inhibitors might be useful in individuals with low PIN1 
function, or in combination with drugs targeting PIN1 or its critical 
substrates [30].  

In conclusion, the present study indicates that roscovitine 
suppresses LPS-induced inflammatory effects in lungs of mice lacking 
PIN1. Genetic variation in PIN1 or drugs targeting the enzyme may 
modulate the Gram-negative sensitivity of different individuals, and 
the effects of CDK antagonists.  
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