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Abstract
The aim of the study was to search for the new animal models of the non-motor symptoms in Parkinson’s disease, especially in terms of drug development. Up-to-
date, development of the new drugs for Parkinson’s disease that aim to stop or slow down the disease progression is unlikely due to the lack of models that truly 
reflect the widespread and progressive pathology of the illness. Similarly, little progress has been made in moving into other pharmacological areas for the treatment. 
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Introduction
Next year, there will be the 200th anniversary of the publication 

of James Parkinson’s monograph entitled “An essay on the Shaking 
Palsy” but still, there is no cure for this progressive disease [1]. The 
sporadic Parkinson’s disease (PD) affects all races equally, with slight 
male predomination, and estrogen replacement therapy was associated 
with delayed age of the onset of PD [2,3]. The clinical manifestations 
consist of motor symptoms such as resting tremor, hypokinesia, 
rigidity, postural instability as well as less obvious, yet burdensome, 
non-motor complications including olfactory, gastrointestinal, 
thermoregulatory and genitourinary dysfunction, sleep disturbances, 
anxiety, fatigue and oral cavity problems [4-9]. Non-motor symptoms 
in Parkinson’s disease appear throughout the course of the disease. 
According to many experts in the field, non-motor features remain 
under-recognised, under-researched, and thus, under-treated [10,11]. 

From the neuropathological point of view, PD is defined by the 
continuous formation of immunoreactive inclusion bodies, which 
develop only in susceptible neuronal types within the central and 
peripheral (including the enteric part) nervous systems [12-14]. These 
lesions are called “Lewy pathology” and tend to play a key role in the 
pathogenesis of PD are not limited to dopaminergic neurons of the 
substantia nigra but also occurs in glutamatergic [12-18], noradrenergic, 
serotonergic, histaminergic, and cholinergic neurons [19]. Thus, 
during the past decade, PD has become recognised as a multi-systemic 
disorder [12,19-22]. Recent findings indicate that the mechanisms of 
neurons’ degeneration and death should be linked to mitochondrial 
dysfunction, oxidative stress, inflammation and apoptosis [24,25]. 
And fore-mostly, PD is a result of complex interactions between 
environmental and genetic factors and thus cannot be studied using 
simplified in vitro models [26,27]. 

The aim of the study was to search for novel animal models of the 
non-motor symptoms closely related to early and prodromal stage of 
Parkinson’s disease, especially in terms of drug development.

Literature search
A search of relevant terms on PubMed and EBSCO databases 

was conducted in November 2016 using a combination of key words 
(Parkinson disease, animal model, neurotoxin) and references of 
publications of interest. These papers (written in English language 
only) were further limited due to the primary focus of this review 
(early phase, early stage, presymptomatic, prodromal, non-motor) 
and thoroughly reviewed. Additional, significant articles in the field 
were found in a less formal manner and were used for comparison and 
inspiration throughout. The majority of papers were published during 
the past decade.

The classical neurotoxins applied in animal models of 
Parkinson’s disease

An ideal animal model of disease is described by the presence of 
behavioural signs and pathology that resemble the disease, including 
the time course of its progressive nature. The closer the similarity of a 
model is to PD, the higher the predictive validity for clinical efficacy. 
Modelling of PD is limited by the lack of complete knowledge about 
the disease [28]. Sporadic Parkinson’s disease is a widespread human 
disease that has never been reported in non-human vertebrates, which 
might partially explain the difficulties in the translation of findings 
from the animal studies into clinically effective treatments, with the 
exception of the deep brain stimulation which was tested in the MPTP-
treated monkeys [29,30]. Still, animal models contribute extensively 
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to our understanding of the pathophysiology of this complex and 
debilitating disease, which consists of an early non-symptomatic 
period, followed by a prodromal phase, often characterised by olfactory 
dysfunction, autonomic failure, sleep, and mood disturbances [31-39]. 
The non-motor features of PD can appear decades before the onset of 
the motor symptoms and are a challenge to the clinical management 
of the disease [10,40-42]. The prodromal phase transitions into a phase 
that is accompanied by the classical motor symptoms and subsequently, 
impaired cognitive functioning. The duration and characteristics of 
each phase are hugely variable among patients and might even interfere 
with the proper diagnosis [12,43]. Thus, the “perfect” PD model should 
reproduce: the progressive evolution of the neuronal damage, the 
presence of cytoplasmatic inclusions (so called Lewy-like pathology) 
in both autonomic and central nervous system, the cell loss in the 
substantia nigra, as well as typical non-motor symptoms followed 
by the motor ones, and finally be responsive to the already available 
therapeutics [31].

In terms of animal species, rodent models of PD present the 
advantage that rats and mice are widely available, have high reproductive 
rates, require reduced living space, simple feeding and drinking 
schedules, however diverse susceptibility to neurotoxins exists between 
those species because of distinct metabolic and enzymatic pathways. 
The main disadvantage of the animal models of PD is the difference 
from the human metabolism of toxins and the difference between 
brain size and complexity of brain functions between rodents and 
humans, which limits the immediate translation of the experimental 
results to the clinic. Non-human primate models might bridge the 
gap and should be considered for testing any novel compounds with 
antiparkinsonian potential [28].

So far, animal models have been of two major types: toxin-related 
and genetic models. The usefulness of neurotoxins for modelling 
especially non-motor complications in PD is limited by the fact that 
many of these symptoms are at least partially independent of dopamine. 
Most of the non-motor symptoms do not correlate with the stage of 
motor deficits and precede the development of the motor symptoms 
by many years before the permanent loss of dopaminergic neurons in 
the basal ganglia can be observed [7,8,35,44-46]. The most widely used 
toxins are MPTP, 6-OHDA, paraquat, reserpine as well as rotenone, and 
have been extensively reviewed in the literature [24,26-29,31,35,38,46-
57]. Less common model substances include tetrahydroisoquinoline 
derivatives (such as salsolinol, for example) or a fungicide – maneb 
[31,49,52-58]. Regarding the molecular mechanisms of cell death, the 
toxin-based models have emphasised oxidative stress, mitochondrial 
dysfunction, apoptosis and microglial activation as key players in PD-
related neurodegeneration. However, one of the main drawbacks of 
these exogenous neurotoxins is that all induce a rapid and extensive 
neurodegeneration in animals which is, unfortunately, contradictory 
to the natural progression of the disease in human [53]. These models 
were proved excellent to model motor symptoms seen in PD but so far, 
their ability to mimic non-motor symptoms seems to be rather limited.

Modifications of the classical neurotoxin-based animal 
models of the non-motor complications in Parkinson’s 
disease 

Up-to-date, development of the next generation drugs for PD that 
aim to stop or slow down the disease progression is unlikely due to 
the lack of PD models that truly reflect the widespread and progressive 
pathology of the illness and its complexity. Similarly, little progress 
has been made in moving into other pharmacological areas for the 

treatment of PD. There is no doubt that the availability of experimental 
animal models of PD has hugely altered dopaminergic drug treatment 
of the motor signs of the PD as well as improved the prevention and 
reversal of drug related side effects that emerge during the disease 
progression [59]. 

An extensive pharmacokinetic, pharmacodynamic and 
pathophysiological data is required to establish an entirely new 
animal model of a disease. Thus, it is much easier to modify existing 
experimental models that are known to form the hallmarks of the PD 
process, and indeed, such attempts have been undertaken. The most 
promising attempts may be classified into the following categories: 
1) neurotoxin-based models with improved protocols, mostly in 
terms of prolonged delivery or additional routes of administration; 
2) administration of well-studied neurotoxins to genetically modified 
animals; 3) models of dopamine and L-DOPA-related  neurotoxicity.

MPTP intoxication was proved to cause parkinsonism in human and 
therefore is the most greatly studied neurotoxin in PD-related models. 
The administration of MPTP directly into the substantia nigra of male 
Wistar rats caused a partial loss of dopaminergic neurons, depletion of 
striatal dopamine and up-regulation of the pro-inflammatory enzyme 
cyclooxygenase-2 resulting in sensorial, memory and motor deficits 
with temporary impairment [60-65]. Reksidler et al. (2008) proposed 
a novel protocol of MPTP nigrostriatal lesion to produce long-lasting 
and progressive loss of nigrostriatal dopaminergic neurons in male 
Wistar rats. Three days intervals were chosen considering the plasticity 
of the dopaminergic system in terms of the locomotor impairments 
inflicted by a single intranigral MPTP administration [66]. Another 
approach consisted of a 28-day treatment of MPP+ infused into the 
left cerebral ventricle via osmotic mini-pumps. The 35% or 65% loss of 
tyrosine hydroxylase positive neurons and Lewy-like pathology were 
observed in substantia nigra of male Sprague–Dawley rats. This model 
of progressive neurodegeneration of nigrostriatal dopamine neurons 
might be useful for studying neuroprotective therapeutic agents for PD 
[67].

Rojo, et al. (2006) recently reported that male C57BL/6 mice 
receiving daily intranasal inoculations with MPTP for 30 days developed 
motor deficits that correlated with depletion of striatal dopamine 
levels (up to 20% of controls) and a loss of tyrosine hydroxylase and 
dopamine transporter immunoreactivity in the substantia nigra and 
striatum [68]. Predinger, et al. (2006) have demonstrated that a single 
intranasal infusion of MPTP produced progressive signs of PD such as 
olfactory and cognitive impairments as well as motor disfunction in 
male Wistar rats [69]. Predinger et al. (2010) have also reported that 
most of the impairments presented by male C57BL/6 mice infused 
with a single intranasal administration of MPTP were similar to those 
observed during the early phase of PD when a moderate loss of nigral 
dopamine neurons results in olfactory and memory deficits with no 
major motor impairments. The levels of tyrosine hydroxylase were 
decreased in the olfactory bulb, striatum and substantia nigra by means 
of apoptotic mechanisms, and dopamine concentration was reduced in 
different brain structures (olfactory bulb, striatum, prefrontal cortex, 
but not in the hippocampus) [70]. Indeed, the nasal mucosa exhibit 
a large surface area directly exposed to environment chemicals, with 
high total blood flow, avoidance of first-pass metabolism and a weak 
blood–brain barrier. Only a few studies have addressed the possibility 
that neurotoxins such as MPTP could damage the basal ganglia 
following intranasal absorption [68-72]. These findings reinforce the 
hypothesis that the olfactory system represents a particularly sensitive 
route for the transport of neurotoxins into the CNS, closely related to 
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the aetiology of PD [12].

Muthian et al. (2010) hypothesised that toxic substances are 
involved in the generation of idiopathic PD by inducing in early life 
„a sensitising stage“ and next, in adults, „a precipitating stage“. In their 
model, pregnant C57BL/6J mice were treated with MPTP administered 
intraperitoneally during gestation days 8-12 to target the emerging 
foetal nigrostriatal dopamine neurons. For the precipitating stage, 
the 3-months old offsprings were administered MPTP for 7 days, to 
simulate the changes that occur during ageing. Offsprings exposed to 
prenatal MPTP showed lower birth weights but eventually recovered. 
The postnatal MPTP administration was more potent in the prenatal 
MPTP-exposed offsprings. The severe toxicity caused by the postnatal 
MPTP challenge in the prenatal MPTP-exposed offsprings might 
represent the precipitating or inducing stage. The authors suggested 
that some cases of idiopathic PD may have a foetal basis in which 
early nigrostriatal impairments occurred and PD symptoms were 
precipitated later by deteriorating changes in the nigrostriatum that 
would not caused symptoms in individuals with normal nigrostriatal 
system. The study identified another possibility to explore and apply as 
a new animal MPTP-realted model for PD [73].

The discovery of mutations associated with familial forms of 
PD, including alpha-synuclein, Parkin, DJ-1, ubiquitin C-terminal 
hydrolase L1 T (UCHL1), PTEN-induced putative kinase 1 (PINK1) 
and Leucine-rich repeat kinase (LRRK2), has led to the generation 
of genetic mouse models of parkinsonism. In comparison with 
neurotoxin-based models, the genetic models are at early stages of 
behavioural and pharmacological characterisation, and especially the 
phenotypical characterisation of non-motor symptoms characteristic 
for the early and prodromal stage of PD remains an emerging area of 
research. In sporadic PD, several genes are likely to be altered, hence 
monogenic models are expected to be less successful than toxin-induced 
ones, but when used in combination should be even more beneficial 
and might allow to model the complete PD phenotype better [74,75]. 
And indeed, idiopathic (sporadic) PD is believed to be a multifactorial 
disorder, caused by the interaction between environmental (such as 
pesticide exposure) and genetic factors [26,27]. 

The exposure of PINK1 heterozygous knockout mice to low doses 
of rotenone, a mitochondrial complex I inhibitor, was not sufficient 
to significantly alter mitochondrial integrity and ATP production but 
it caused severe impairment of long-term plasticity at corticostriatal 
synapses [76]. A 3-week treatment with low doses of paraquat, one of 
the most popular herbicides, induced neither neurodegeneration in the 
substantia nigra nor altered the basic electrophysiological properties 
of both nigral and striatal neurons in PINK1 heterozygous mice. 
However, paraquat exposure caused complete failure of both long-
term potentiation and long-term depression at corticostriatal synapses, 
which demonstrate that the exposure of PINK1 heterozygous mice to 
low doses of paraquat may exacerbate the initial breakdown of synaptic 
function typical for the early stage of the neurodegenerative process 
[77]. In transgenic mice with the A53T mutation overexpressing 
human alpha-synuclein, exposure to rotenone over a 35-day period 
resulted in decreased spontaneous locomotor movement and 
increased cytoplasmic alpha-synuclein expression. The mitochondrial 
Parkinson’s-associated PTEN-induced kinase 1 protein levels were also 
increased in transgenic mouse brain after rotenone treatment but there 
was no change in brain dopamine levels or nigrostriatal cell loss [78].

More recently, another approach has been used to couple genetic 
manipulation and neurotoxins. Stereotactic unilateral viral delivery, 

using adeno-associated virus (AAV) vectors, of alpha-synuclein into 
the substantia nigra of male Sprague–Dawley rats was followed by 
4-weeks subcutaneous exposure to rotenone via osmotic mini-pumps, 
causing motor dysfunction, nigrostriatal neurodegeneration and 
α-synucleinopathy to an extent that was greater than the impact of 
either insult alone [79]. Viruses have also been used to deliver short 
hairpin RNA (shRNA) to obtain an in vivo gene knockdown targeting 
SNCA transcript in adult male Lewis rats. The authors inhibited 
expression of endogenous alpha-synuclein in the rat substantia 
nigra through viral (AAV vectors) delivery of shRNA. Interestingly, 
knockdown of alpha-synuclein by 35% neither affected motor function 
nor caused degeneration of nigral dopaminergic neurons in control 
rats. However, motor deficits observed in rotenone-treated rats were 
significantly reduced contralateral to alpha-synuclein knockdown, 
suggesting that alpha-synuclein may modulate cellular susceptibility to 
external stressors [80]. 

These preliminary data highlight the relevance of such mixed 
models, confirming their validity and suggesting that such an 
experimental setting may be useful for future testing of neuroprotective 
and possibly disease-modifying therapeutic approaches [81]. 

Besides symptoms particularly attributable to pathologic changes in 
the nervous system many of them represent adverse effects of the gold 
standard medication in PD, namely L-DOPA, designed to replenish the 
loss of dopamine from dopaminergic neurons. In advanced PD L-DOPA 
cannot not effectively replenish dopamine because few dopaminergic 
neurons remain in the nigrostriatal pathway. The pathogenic effects 
of L-DOPA has been well documented, however, the mechanisms 
of action of L-DOPA is not entirely clear. Dopamine- and L-DOPA-
induced neurotoxicity mediated by the generation of free radicals has 
been reported in damaged neurons in vitro and in vivo [82-84]. It was 
also demonstrated that repeated administration of L-DOPA increased 
lipid peroxidation in the striatum of parkinsonian mice lesioned by 
intracerebroventricular injection of 6-OHDA [83]. According to De 
Deurwaerdère et al. (2016), L-DOPA is principally transformed into 
dopamine in neurons yet, with a more important role for serotonergic 
than dopaminergic projections, as well as marked (probably indirect) 
influence upon cholinergic, GABAergic and glutamatergic neurons. 
L-DOPA may exert a complex pattern of neurochemical effects of 
much greater scope that striatal transformation into dopamine in 
spared dopaminergic neurons. Their further experimental and clinical 
clarification should help to improve both L-DOPA-based and novel 
strategies for controlling the motor and other, especially psychiatric, 
symptoms of PD [85].

Since dopamine and L-DOPA quinones may irreversibly alter 
protein function through the formation of 5-cysteinyl-catechols on the 
proteins, aminochrome was proposed as another preclinical model of 
PD [86-92]. Aminochrome is one of the o-quinones (the most stable 
o-quinone) formed during dopamine oxidation to neuromelanin and 
it has been found to induce mitochondrial dysfunction, formation of 
neurotoxic alpha-synuclein oligomers, oxidative stress, dysfunction 
of protein degradation of both proteasomal and lisosomal systems, 
endoplasmic reticulum stress [90-95]. Unilateral injection of 
aminochrome into striatum of Sprague–Dawley rats induced a 
progressive contralateral behaviour without loss of nigrostriatal 
dopaminergic neurons. The level of dopamine significantly decreased 
while the GABA level significantly increased [96]. Aminochrome 
is neurotoxic when it forms adducts with proteins or when reduced 
by flavoenzymes. However, there are two enzymes that prevent from 
aminochrome neurotoxicity: DT-diaphorase prevents aminochrome-
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induced cell death, mitochondrial dysfunction, oxidative stress, protein 
degradation dysfunction of both proteasomal and lysosomal systems 
together with formation of alpha-synuclein neurotoxic oligomers, 
while glutathione transferase M2-2 (GSTM2) catalyses the glutathione 
conjugation of both aminochrome and its precursor (dopamine 
o-quinone). Therefore, DT-diaphorase or GSTM2 knockouts injected 
with aminochrome might also serve as a new preclinical model to study 
both PD patomechanisms and to develop new antiparkinsonian drugs 
[89-91,96].

Clinical trials related to early Parkinson’s disease
The actual treatment of PD is based on dopaminergic and anti-

cholinergic compounds. Both the academia and the pharmaceutical 
industry have failed to find new compounds to stop or slow down the 
progression of the disease. Recently, numerous successful preclinical 
studies of potentially neuroprotective or disease modifying agents have 
also failed to translate their positive results to clinical studies, for instance: 
caffeine, coenzyme Q, creatine, estrogen, ganglioside, minocycline, 
nicotine, ubiquinone [97,99–100]. The lack of understanding regarding 
the pathogenesis of PD, inaccurate animal models, limitations in trial 
design, insensitive endpoints/outcome measures of clinical trials, the 
lack of validated biomarkers and the suboptimal patient population 
choice for clinical trials have been enumerated as the significant obstacles 
that continue to impede the neuroprotective and antiparkinsonian 
drug development. Animal models of PD have undoubtedly led to 
great steps forward in the treatment of the motor symptoms and drug-
related complications of PD, but it is too early to judge whether they 
might be successful in aiding the development of disease modifying 
or neuroprotective strategies [97].  Any data coming from animal 
studies should be carefully evaluated prior to generalisation, because of 
different experimental settings and confounding factors, such as routes 
of neurotoxins’ administration, animal species and strains, chemical 
purity of administered compounds as well as different antibodies used 
in detection of Lewy-like pathology and other patomorphological 
changes [98].

Although the clinical research is ongoing, there are no validated 
and sensitive biomarkers to diagnose PD and monitor response to 
therapeutic interventions [97]. The Parkinson’s Progression Markers 
Initiative has published encouraging results showing that levels of CSF 
Aβ1-42, T-tau, P-tau181 and α-synuclein have prognostic and diagnostic 
potential in early stage PD, with lower levels seen in PD compared with 
healthy controls [101]. There is also an increasing research interest 
in screening individuals for prodromal PD, based on the symptoms 
(including loss of sense of smell, constipation, rapid eye movement 
sleep behaviour disorder and mood changes), along with dopamine 
transporter single-photon emission computed tomography scanning. 
The non-motor symptoms alone have insufficient specificity to identify 
the population at risk of developing PD, before neurodegeneration 
progresses beyond the reach of any possible neuroprotective agent and 
before significant clinical symptoms occur [97,102].

Conclusions and future directions
Unfortunately, our understanding of the critical molecular events 

causing neurodegeneration in PD is limited and consequently there is 
little progress in pharmacotherapy of PD, especially to interfere with 
the disease progression. The genuine complexity of PD as a syndrome 
with multiple aetiologies should be kept in the spotlight to ensure 
progress in the field. Thus, it seems logical to stress the importance 
of the ability to diagnose potential Parkinsonian patients accurately 

and instantly. The precise understanding of the changes in the disease 
course in relation to treatment effects and patient-level factors should 
warrant the proper design and efficiency of future preclinical studies. 
For the time being, the knowledge regarding Parkinson’s disease 
should be primarily transferred from patients to animal models, if we 
want to effectively design not only the treatment to stop or slow down 
the disease but more importantly preventive strategies.
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