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Abstract
Smoking and tobacco use continue to be the largest preventable causes of death. Although there are current pharmaceutical and behavioural therapies, the one-year 
sustained quit rate of these therapies is only 20-25% at best. Recently, an alternative biotherapeutic strategy has been proposed: enzymatic degradation of nicotine 
in the bloodstream preventing accumulation in the brain. The bacterial enzyme NicA2 oxidizes nicotine into pseudo-oxynicotine, a non-addictive compound already 
found in smokers. Proof-of-concept animal studies have shown that NicA2 can rapidly reduce the levels of nicotine accumulating in the brain after intravenous 
nicotine dosing, and NicA2 has shown to have efficacy in a continuous nicotine access self-administration rat model.

Enzymatic elimination of nicotine upon smoke inhalation to combat tobacco addiction is an innovative therapeutic concept. However, it is in line with recent clinical 
studies demonstrating that reduction in nicotine content in cigarettes (to 2.5% of normal levels) lead to significant reduction in the number of cigarettes smoked and 
higher smoking cessation rates compared to a control group smoking normal nicotine level cigarettes. Enzymatic degradation of nicotine appears to be more potent 
than nicotine-specific antibodies or vaccines for reducing nicotine distribution to brain, and if this proves to be the case in humans, it could also be more effective 
for enhancing smoking cessation rates and succeed where nicotine vaccines have failed thus far. The work reviewed in this article constitutes promising initial steps 
towards an urgently needed new effective treatment strategy in smoking cessation therapy. 
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Introduction
Smoking and tobacco use continue to be the largest preventable 

causes of death [1]. In 2015, approximately 6.4 million deaths were 
attributed to smoking worldwide. Although most smokers are 
aware of the health risks, smoking cessation is usually difficult to 
maintain. Current pharmacological therapies for smoking cessation 
combined with counselling have significant clinical effects compared 
to counselling alone [2]. However, only 20-25% of smokers remain 
abstinent for at least 1 year after treatment [3]. This fact means that 
new, more efficacious drugs need to be developed.

Multiple meta-analyses have been conducted to investigate the 
pharmaceutical interventions for smoking cessation, and guidelines 
have been published by many organizations [2,4]. The first-line 
pharmacological therapy for smoking cessation are nicotine replacement 
products (patches, gums, inhalers, nasal sprays, tablets, and oral 
sprays). It evokes its effects by stimulating the nicotinic receptors in the 
ventral tegmental area of the brain releasing dopamine in the nucleus 
accumbens [5]. NRT can lead to a reduction in withdrawal symptoms 
in smokers who would like to quit. Varenicline works as a partial 
agonist of the nACh receptor also releasing dopamine [6]. Furthermore, 
Bupropion, a tricyclic antidepressant, can be used in smoking 
cessation therapy. It inhibits reuptake of dopamine, noradrenaline, 
and serotonin in the central nervous system, and is a non-competitive 
nicotine receptor antagonist. The inhibition of the levels of dopamine 
and noradrenalin are thought to be important for Bupropion to have 
its antismoking actions [7]. Varenicline and bupropion are usually 
prescribed and when used for 2-3 months achieve a doubling of the 

quit rate compared to placebo [8]. Furthermore, counselling should be 
given to help in smoking cessation. Brief advice alone given by a general 
practitioner result in a 2-3% increase in quit rates [9]. To stop smoking 
is to break a complex habit and addiction and, to achieve reasonable quit 
rates, it is necessary to provide psychological support combined with 
pharmacological drugs. However, even with optimal pharmacological 
therapies only 20–25% of smokers remain abstinent for at least 1 year 
after treatment. This means that new therapies need to be developed.

As an alternative to small-molecule-based therapies, 
immunotherapeutic approaches to smoking cessation and vaccination 
against nicotine were investigated in the last three decades [10]. 
Researchers showed that it is possible to link or conjugate psychoactive 
drugs (such as cocaine, heroin or nicotine) to carrier proteins, 
thus making these small molecules antigenic. This work led to the 
hypothesis that it may be possible to develop vaccines which can 
prevent or treat addiction to these drugs. The proposed mechanism of 
action is that vaccine-elicited antibodies target and capture the drug 
in the periphery, reducing the concentrations reaching the brain and 
reducing its reinforcing effects. Nicotine conjugate vaccines showed 
early promise preclinically but failed to demonstrate broad clinical 
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efficacy in large clinical randomised controlled trials [10,11]. Although 
increased efficacy was observed in those individuals who attained 
the highest anti-nicotine antibody titres [10-12], indicating that an 
antibody-mediated strategy in smoking cessation could work, the levels 
of antibodies generally were too low and too variable to have a clinically 
relevant outcome [13]. Essentially, the challenge has been a lack of 
potency to alter the pharmacokinetics of nicotine sufficiently in order 
to eliminate its reinforcing effects across a broad population of smokers.

Recently, an alternative biotherapeutic strategy has been proposed: 
nicotine degradation via an enzymatic approach, eliminating its 
exposure to the brain [14]. Pseudomonas putida S16 is an example of a 
nicotine-degrading bacterial strain that can use nicotine as its nitrogen 
and carbon source. It was originally isolated from a field underneath 
continuous tobacco cropping in China and is able to metabolise nicotine 
to fumaric acid [15]. The enzyme found in the first committed step of 
S16’s nicotine degradation is NicA2, an amine oxidase. NicA2 oxidises 
nicotine to N-methylmyosmine, which undergoes rapid, spontaneous 
hydrolysis to pseudooxynicotine, a non-addictive compound already 
found in smokers. 

Xue and colleagues studied the features of NicA2 in vitro to evaluate 
its potential as a starting point for the development of a nicotine-
degrading drug for use in smoking cessation therapies [14]. They 
demonstrated that NicA2 has favourable characteristics such as high 
stability in buffer and mouse serum, as well as high catalytic activity at 
nicotine concentrations typically found in smokers’ blood [14]. 

NicA2 was subsequently evaluated in vivo through single-dose 
nicotine pharmacokinetic (PK) studies in rats pre-treated with a range 
of NicA2 doses [16,17]. Reduction in nicotine blood and brain levels 
was measured 1, 3 and 5 minutes after an intravenous bolus dose of 
0.03 mg/kg nicotine. This nicotine dose is equivalent to 2 cigarettes with 
regard to milligrams of nicotine per kilogram of body weight. Short 
intervals were used, as the enzyme’s effectiveness is expected to be 
dependent on the rapid elimination of nicotine. While smokers achieve 
maximum levels of brain nicotine in 3 to 5 minutes, nicotine is initially 
detected in the brain 7 seconds after the first inhalation [18]. NicA2’s 
effects on nicotine distribution to the blood and brain were dependent 
on dose and time, as shown in the Figure 1 below [17,19]. When dosed 
at 5 mg/kg, blood levels of nicotine dropped to below the limit of 
quantitation of the assay (2 ng/ml), virtually eliminating nicotine from 
the bloodstream within 1 minute as compared to the control group. 
The levels of nicotine in the brain were also assessed, with a 10-mg/kg 
NicA2 dose lowering brain nicotine levels by 95% at 3 and 5 minutes 
after nicotine dosing as compared to the control group, while a higher 
dose of 20 mg/kg was needed for reducing brain nicotine levels to the 
same extent within one minute. As one minute is a practical time limit 
to euthanise the rats and to collect blood and brain samples, the onset of 
enzyme activity was evaluated in blood samples in vitro, where typical 
maximum blood levels of nicotine were degraded to below the level of 
detection within 10 seconds [17]. 

In repeated nicotine dose experiments that simulated very heavy 
smoking, 5 doses of 0.03 mg/kg nicotine spaced 10 minutes apart 
(equivalent to 10 cigarettes over 40 minutes) were given intravenously 
to rats pre-treated with 10 mg/kg NicA2. Brain nicotine levels were 
lowered by the same degree after the 5th dose as after the 1st dose of 
nicotine, a potency never observed for immunotherapeutic approaches 
[17,19,20]. 

In order to enable longer-term in vivo testing, two different 
constructs fusing NicA2 to an albumin-binding domain (NicA2-

ABD) [21] have been independently reported [17,22]. Circulating 
half-life was extended from a few hours to 2.5 days in rats, similar 
to that of endogenous serum albumin, without affecting its catalytic 
activity [16,17]. Consistent with the effects of NicA2 on reduced 
nicotine distribution in the brain, when such an enzyme fusion was 
administered to rats during a 7-day nicotine infusion, it reduced signs 
of withdrawal following termination of the nicotine infusion compared 
to the control group. A significant impact was observed on nicotine’s 
behavioral effects by preventing the development of irritability-like 
behavior, hyperalgesia and somatic signs of withdrawal in animals 
exposed to chronic nicotine, strongly supporting the theory that NicA2 
may prevent the development of addiction-like behavior. Moreover, 
there was no nicotine detected in the blood or brains in the treated 
group, while the control group exhibited expected concentrations of 
nicotine in both blood and brains[22]. By contrast, nicotine vaccines 
were only partly able to reduce brain nicotine concentrations, probably 
leading to the observed lack of efficacy [23]. 

Importantly, a NicA2-ABD fusion was shown to decrease 
nicotine discrimination and reductions in nicotine reinforcement in 
a continuous nicotine access self-administration model which closely 
resembles human nicotine exposure. In this model [24], rats are trained 
to self-administer nicotine and develop a stable dependence on nicotine 
for several weeks before being tested. After a high dose of NicA2-ABD 
(70 mg/kg), nicotine-seeking behaviour was extinguished over 6 days of 
testing with rats having continuous access to nicotine as seen in Figure 

Figure 1. Reduction of blood and brain nicotine concentrations by NicA2. Rats were 
pre-treated with NicA2 IV and 5 minutes later received 0.03 mg/kg nicotine IV. Groups of 
eight rats had nicotine levels measured at 1, 3 or 5 minutes in blood (upper panel) and brain 
tissue (lower panel). Nicotine concentrations were rapidly reduced by NicA2 in a dose- 
and time-related manner. **p < 0.01, ***p < 0.001 compared to BSA using Bonferroni-
corrected Welch’s t-tests. Reproduced with permission from [7].
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2 [17]. Furthermore, NicA2-ABD decreased compulsive-like nicotine 
intake, and prevented nicotine- and stress–induced relapse [25].While 
these initial studies provide proof of concept for the use of NicA2 as a 
basis for developing a smoking cessation drug, one must obviously be 
careful with extrapolating these animal-based observations. Limitations 
of these studies include nicotine dosing by bolus intravenous injection 
as opposed to inhalation. 

Important challenges will have to be addressed in order to develop 
NicA2 into an effective therapeutic agent. It needs to be confirmed 
that the metabolites of NicA2’s nicotine degradation do not lead to 
significant toxicities. The safety of NicA2 has been initially assessed in 
mice by administering pseudooxynicotine (PON), the main metabolite 
of nicotine’s metabolism by NicA2. PON has not been reported to 
possess addictive properties and is metabolized to a non-toxic keto 
acid, while all mice remained healthy and post-mortem studies showed 
no organ damage or neoplasia [14]. Importantly, NicA2 production of 
PON does not introduce any novel compounds, as 7–9% of the nicotine 
in smokers is metabolized to PON by liver cytochrome P450 enzymes 
[25-27]. Screening an initial panel of endogenous nicotine metabolites 
indicated that NicA2 is highly specific for nicotine [17]. However, 
more thorough toxicity and safety studies are needed to evaluate the 
metabolites of NicA2 further, as well as potential side effects related 
to substrate specificity and potential effects on endogenous substrates.

NicA2 which is a bacterial protein may be immunogenic, since this 
is unfavorable for human use, this characteristic should be minimized. It 
should be noted that many engineered proteins of entirely non-human 
origin or animal-human chimera have been approved by regulatory 
authorities for human use [28]. In addition, the expected duration of 
enzyme treatments needed for smoking cessation is relatively brief, as 
is commonly observed with the 12-week treatment period of present 
smoking cessation drugs. This relatively short expected duration of 
treatment should reduce the risk of developing anti-NicA2 antibodies. 

Finally, improving catalytic activity to reduce the dose amounts 
predicted on the basis of the reported in vivo studies will be important. 

Modern protein engineering techniques have been successful in 
optimising catalytic activities of enzymes [29,30] . Such improvements 
are needed for realistic dose levels, suitable routes and frequency of 
drug administration.

NicA2 promises a new treatment strategy in smoking cessation, 
since it rapidly degrades nicotine within a few minutes. In a clinical 
sense, it is envisioned to be administered intravenously by injection 
in a physician’s office during cessation counselling. As one of the 
most important predictors of success is self-motivation, it could be an 
important advantage over vaccines if patients can immediately initiate 
a quit attempt while the motivational level is at its peak without having 
to wait for months before an immune response builds up, as in the case 
of vaccines. Attempts to quit should become easier, since the nicotine 
does not reach the brain to evoke its rewarding effects and smoking will 
not result in a rewarding stimulus. Eventually, this process could lead to 
long-term abstinence, as smoking is no longer associated with a reward. 

It is interesting to note the parallel between NicA2 treatment to 
reduce nicotine exposure and the effect of lowering the nicotine content 
in cigarettes themselves. In clinical studies, smokers who did not have 
an intention to quit were provided with a range of nicotine-containing 
cigarettes, including Very Low Nicotine Content (VLNC) cigarettes 
(0.3 mg/cig; 2% of Normal Nicotine Content (NNC) cigarettes). These 
smokers experienced reduced nicotine exposure and dependence, 
reduced cravings during abstinence from smoking and increased 
unprompted quit attempts in comparison with smokers who were 
assigned NNC cigarettes [31]. In treatment-seeking smokers, greater 
reductions in nicotine exposure while smoking VLNC cigarettes 
predicted smoking cessation [32]. Furthermore, withdrawal symptoms 
were mild to moderate, comparable to withdrawal symptoms when 
using a nicotine patch [33]. Moreover, minimal compensatory smoking 
was observed [34]. In a study where subjects had free access to VLNC 
cigarettes but not NNC cigarettes (sequestered in a hotel), a 92–94% 
reduction in nicotine exposure biomarkers was observed [35]. This 
approach has recently been embraced in the US by the FDA’s Center for 
Tobacco Products, proposing the regulation of tobacco products with 
the intention of lowering the nicotine content to non-addictive levels 
[36]. Whether it will ultimately be politically possible to eliminate the 
sale of tobacco containing addictive levels of nicotine is unknown. The 
timeline for the FDA plans is not yet defined and may take a decade 
or more to implement fully in the US, while it is uncertain how many 
other countries worldwide would or could follow a similar path. 
However, these clinical studies do emphasise that nicotine is a key 
addictive component and lend validity to the concept of enzymatically 
eliminating nicotine in the form of smoke inhalation to combat tobacco 
addiction.

Enzymatic degradation of nicotine appears to be more potent 
than nicotine-specific antibodies or vaccines for reducing nicotine 
distribution to the brain in rats. If this situation proves to be the case in 
humans as well, it could be more effective in order to enhance smoking 
cessation rates and succeed where nicotine vaccines have failed thus 
far. This development could be a major step forward in the race that 
we must win to reduce the number of smokers which die prematurely 
each year [37]. 
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Figure 2. Effects of NicA2-ABD on self-administration of nicotine in rats having 
unlimited access to nicotine.  Mean (± SD) number of infusions during 23-hr access 
following pre-treatment with PBS vehicle (V) and NicA2-ABD over six consecutive test 
sessions, expressed as a percentage of baseline. Each point represents the mean of four rats. 
The dotted horizontal line represents baseline. The dashed horizontal line represents the 
50% reduction criterion for extinction.  Different from V by paired t-tests, **p < 0.01, ***p 
< 0.001. Reproduced with permission from [18].
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