
Research Article

Translational Brain Rhythmicity

Transl Brain Rhythmicity, 2016         doi: 10.15761/TBR.1000104  Volume 1(1): 14-18

Supervised semi-automatic detection of slow waves in 
non-anaesthetized mice with the use of neural network 
approach
Olga Bukhtiyarova1,2, Sara Soltani1,2, Sylvain Chauvette1 and Igor Timofeev1,2*
1Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Canada
2Deptartment of Psychiatry and Neuroscience, Université Laval, Canada

Abstract
Slow waves (SWs) are EEG or local field potential (LFP) events that are present preferentially during slow-wave sleep and reflect periods of synchronized 
hyperpolarization followed by depolarization of many cortical neurons. We developed a new algorithm of supervised semi-automatic SW detection based on pattern 
recognition of the original signal with artificial neural network. The method enabled fast analysis of long-lasting recordings in non-anaesthetized freely behaving 
mice. It allowed finding tens of thousands of SW in 24-hour period of recording with their density in the order of 1.3 SW per second during slow-wave sleep and 0.03 
SW per second during waking state. Occasional SWs were also found in REM sleep. The proposed algorithm can be used for off-line and on-line detection of SW.
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Introduction
Slow waves (SW) are recurrent fluctuations of EEG or local 

field potentials (LFP) that dominate during slow-wave sleep [1]. 
Simultaneous recordings of cortical intracellular activity and LFP 
showed that the SWs reflect synchronized activity of large groups 
of cortical neurons that nearly simultaneously alternate between 
depolarized and hyperpolarized states [2-7]. 

Typically, the quality of sleep is estimated from the calculation of 
delta power, the power of EEG/LFP events in a frequency <4 Hz [8,9]. 
Although SWs are the main elements that contribute to the EEG delta 
power (0.2-4 Hz), they are not synonymous [10] and the number and 
other characteristics of the SWs such as amplitude and duration cannot 
be directly estimated with simple filtering. Multiple studies point to the 
importance of SWs as critical elements mediating sleep-dependent 
plasticity, epileptogenesis and memory consolidation [11-14].

Trained observers can relatively easily distinguish the SWs in 
short segments of LFP recordings. The specific shape of an SW can be 
described as a sharp deflection of depth-positive or surface-negative 
wave with reduction in fast-frequency components [4,15]. During 
sleep, their amplitude and duration vary a little and depend on cortical 
area, being shorter and of lower amplitude in motor and somatosensory 
areas, and longer and ampler in associative and visual cortical areas, but 
the duration of intracellular silent states always exceeded 100 ms [16]. 

However, the visual examination is time consuming. In addition, 
the increasing rate of human errors with the fatigue of the examiner 
makes it impossible to visually analyze long-term recordings.

The existing methods of automatic SW detection are based on 

their particular features such as amplitude and duration thresholds 
[17,18], and spectral characteristics of the signal [15]. The amplitude 
and polarity of SWs are depth-dependent, and the local neuronal 
synchrony also affects the amplitude of SWs. Therefore, these methods 
are not sufficiently robust for their effective automatic recognition in 
non-anaesthetized freely behaving mice.

We developed a new method for SW detection that is based on 
the recognition of their original shape with the use of artificial neural 
network. With a different level of accuracy, the machine-learning 
approach was previously used for automatic detection of various EEG 
events [19-22]. Unlike other methods, our approach did not require 
preliminary formal extraction of a pre-set number of SW features 
(such as slope, amplitude etc.). By contrast, we let the artificial neural 
network to find the characteristics of the shape of the original signal 
segment that would allow its identification as an SW.

Materials and methods
Animals

All experiments were performed under sterile conditions and in 
accordance with the guideline of the Canadian Council on Animal 
Care and approved by the Université Laval Committee on Ethics and 
Animal Research. Experiments were performed on young (2-3 months) 
male C57Bl/6 mice (n=5). 
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Surgery and electrode implantation

Mice were first anaesthetized with 1-2% isoflurane and the head was 
shaved. The mouse was then fixed in the stereotaxic frame. All incision 
sites and pressure points were injected with a mixture of Bupivacaine 
(0.25%)/Lidocaine (0.5%). The head was cleaned with three passages of 
chlorhexidine/alcohol (0.5%). Buprenorphine (0.1 mg/kg) and saline 
(0.9% NaCl) (s.c.) were injected. Alternating passages (n=3) of bleach 
(0.03% sodium hypochlorite) and hydrogen peroxide (3%) were used 
to clean the skull. The skull was drilled and LFP electrodes (custom-
made electrodes, stainless steel wires, 125 μm diameter, PFA-insulated) 
were implanted in diverse cortical regions to a depth of 0.6 mm from 
the cortical surface: frontal cortex (AP: +2.5 mm; ML: 1.5 mm; DV: 
-600 µm); somatosensory cortex (AP: -1.46 mm; ML: 2 mm, DV: -600 
µm and AP: -0.94 mm, ML: 3 mm, DV: -600 µm). We used one screw 
(stainless steel) over the cerebellum as a reference and 4 anchoring 
screws (2 screws on each side of the skull). Two electromyogram 
(EMG) electrodes (single-stranded stainless steel wire (PFA-insulated), 
75 μm) were inserted into the neck muscle to record EMG activity. All 
the LFP, EMG electrodes and the reference electrode were connected 
to a Nano-Miniature omnetic connector and were covered and fixed 
with dental acrylic (mixture of Dentsply Repair Material Powder and 
Dentsply Repair Material Pourable Denture Base Liquid, Dentsply-
Sundries, DA, USA). 

Recordings

The recordings were done within standard animal facility settings. 
The standard mice cages were modified enabling the passage of a cable 
connecting the animal to the recording system. Miniature custom-
made buffer pre-amplifier (voltage amplification coefficient 1, but it 
amplifies current) was attached directly to the head and it was used 
to reduce movement artefacts in cables. These pre-amplifiers were 
connected to the commercially available AM amplifiers (Model 3000, 
A-M system, Sequim, WA, USA). The signals were band-pass filtered 
between 1 and 100 Hz and the notch filter was used at 60 Hz. The light 
cycle was 12h/12h with the lights off at 7 pm. LFPs and EMG were 
continuously recorded (sampling rate 1 kHz) with LabChart (AD 
instruments, Colorado Springs, CO, USA) 24 hours per day at least for 
3 weeks. 

Analysis

All recordings were analysed off-line using custom-written 
routines in IgorPro (Lake Oswego, Oregon, USA) and Matlab 2011a 
(MathWorks, Massachusetts, USA).

Determination of states of vigilance

The states of vigilance were determined based on visual examination 
of 3 LFP channels and EMG. Presence of SWs in all 3 channels with 
low EMG activity was considered as SWS, high EMG activity was 
considered as wake and the presence of LFP theta-rhythm with very 
low EMG values was considered as REM. The dynamic thresholds for 
EMG activity were set for every 4-hour segment of recordings.

Supervised semi-automatic SW detection with the neural 
network approach. The algorithm for SW detection consisted of the 
following steps:

1. Segmentation of the original signal

a. The original signal was filtered in the range of 0.2-4 Hz (Figure 1A). 

b. The filtered trace was used only as reference to find the time 
points for splitting the original signal into smaller segments. For the 
beginning of each segment we chose a time point corresponding to 150 
ms prior to the median between all local negative and positive peaks of 
the filtered signal (ascending trace). A time point of 150 ms after the 
median between local positive and negative peaks (descending trace) 
was defined as the end of the segment.

2. Preparing input data for neural network training. 

Original LFPs with overlaying filter trace of 2-3 minutes of SWS 
with regular SW activity were plotted (Figure 1A). SWs were user 
defined based on their amplitude, duration, slope, curve characteristics, 
reduction in fast-frequency components during depth-positive waves 
and their presence before and after the slow wave. Everything else was 
considered as Noise. Each analyzed fragment contained 1 “SW” (red) 
or “Noise” (blue) element marked with a color trace and 5 seconds of 
background LFP activity. The marked elements were visually inspected 
and the plots were manually sorted into separate folders for “SW” 
(Figure 1B) and “Noise” (Figure 1C). The title of each contained a 
number that corresponded to the starting time point of the inspected 
segment. These numbers were extracted from the folders and then 
used as reference for starting and ending time points of original signal 
segments that served as user-defined “SW” and “Noise” templates. Only 
definite SW and noise segments were used as input for artificial neural 
network training. Each group of templates was defined separately for 
recordings from each electrode and contained at least 100 segments of 
each class.

Figure 1. Artificial neural network approach used to analyze local field potential recordings. 
A. Fragment of frontal LFP (black – original trace, grey – 0.2-4 Hz filtered trace). Numbers 
indicate locations of LFP segments shown as templates in B and C. B. Examples of slow 
wave templates manually selected for neural network training (red trace). C. Examples of 
noise templates manually chosen for neural network training (blue trace). D. Architecture of 
the 2 layer feed-forward neural network that was used to classify analyzed segments of the 
original signal as SW or Noise; w – weights, b – bias. Hidden layer neurons use tan-sigmoid 
transfer function. Output layer neurons use softmax transfer function.
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3. Training of the neural network to classify the chosen templates 
into 2 groups. 

We used Neural Network Pattern Recognition Tool from Matlab 
to process data. The structure of the artificial neural network that was 
created with a built-in function patternnet is shown in Figure 1D. It 
consisted of input (segments of original signal that were predefined 
as templates for “SW” and “Noise”, the size of input depended on the 
maximal duration of the preselected elements and was in the range 
of 650 msec), a hidden layer and an output layer with 20 nodes (the 
interconnected computing elements that could extract logical rules 
of relationship between inputs and associated classes), and outputs 
(binary values corresponding to the 2 classes of elements) [23,24]. The 
number of weights and bias (‘w’ and ‘b’ in Figure 1D) slightly differed 
between channels and in average equaled to 10852 ± 425 elements. The 
preselected templates were randomly divided into 3 groups: for training 
(60%), validation (20%) and test (20%). The network was trained with 
the use of the function trainscg. Being trained on a small number of 
examples (Figures 1B and 1C), when the relationship with their pattern 
and associated class was found, the rules  could be generalized onto 
large amount of data. 

4. Application of the neural network. 

The SW and the background ‘noise’ patterns depend on different 
factors including location of the electrode. Therefore, the training sets 
were created separately for each animal and for each channel of the 
recording. Due to random process of initializing the weights, each 
training of the neural network gave slightly different results. After 3-5 
rounds of neural network training, we chose the neural networks that 
showed the highest overall rates of correct classification of SW and 
Noise elements that were in the range of 96.1 ± 1.6%. Then the trained 
neural network was used to identify SW in long-lasting recordings. 

5. Post-processing of the results.

The developed algorithm allowed identification and storage of each 
single detected SW. To improve the quality of SW detection during 
movements, we semi-automatically removed artefacts that were co-
incident with high muscle activity with the use of dynamic EMG 
thresholds defined for every 4 hours of recordings on the basis of 
distribution of absolute EMG potential values.

Results 
The results of SW detection with neural network on a short segment 

are shown in Figure 2. The original trace (Figure 2A) was filtered to create 
the reference time points of all events for their further classification 
(Figure 2B). The detected SWs are shown in red and detected segments 
of noise are shown in blue (Figures 2B-2D). It is evident that the 
applied algorithm yields an excellent quality of detection, however 
some aspects need to be discussed. Neural network detected as noise 
(blue) an event that by brief visual inspection could be defined as an 
SW (Figure 2C, red offset trace). This event was characterized by ample 
depth-positive smooth half-wave followed by a sharp, depth-negative 
half-wave accompanied with high frequency activities. Such events are 
normally considered to be real SW because a ‘smooth’ depth-positive 
LFP wave is typically associated with hyperpolarization and silence 
of cortical neurons and depth-negative LFP waves are associated 
with neuronal depolarization, high-frequency neuronal activities and 
firing [4,15]. Closer examination however, revealed that the duration 
of silent phase of the oscillation was well below 100 ms, therefore, the 
network correctly did not detect this event as an SW if we assume that 
the typical duration of intracellular silent states during slow-wave 

activity is longer than 100 ms (see introduction). On the other hand 
the network detected an event as an SW that might not be one (Figure 
2D, blue offset trace). The duration of this event is roughly 200 ms, 
but it contains high frequency components that are usually not found 
during ‘true’ silent states. This might be considered as a false positive 
detection. However, the proposed method enabled 91 ± 5.3% correct 
classifications for SW (as we mentioned above it was 96.6 ± 1.3 for 
Noise). Therefore, we conclude that the neural network method can 
be used to detect semi-automatically SWs if a few percent errors are 
acceptable.

Next, we used the neural network algorithm to detect SWs from 
long segments of recordings. The neural network processed signals 
very fast. Using a MacBookPro computer (OS 8.3,  Processor Intel 
Core i7, 2.3 GHz, memory 8 GB), 4 hours of LFP recordings from one 
channel were analyzed within 0.59 sec (excluding time for filtering 
and segmentation of the signal). Overall we found tens of thousands 
of SWs in 24-hour period of recording, with a density in the order of 
1.3 SWs per second during slow-wave sleep and 0.03 SWs per second 
during waking state. An example of about 12 min of recording with 
detected SWs is shown in Figure 3A. The initial 3 min of recording were 
identified as waking state because there were relatively low amplitude 
LFP activities in all recorded channels and variable muscle tone. After 
that, the mice entered in a 6 min long SWS state characterized by 
increased LFP amplitude, low and relatively stable muscle tone except 
some twitches. The last part of this recoding segment shows REM sleep 
characterized by low LFP amplitude and an absence of neck muscle 
tone. As expected, neural network detected multiple SWs during SWS 

 

Figure 2. Results of the neural network segment detection. A. Fragment of the original 
signal (frontal channel) to which the trained neural network was applied. B. Results of 
pattern recognition and classification performed by neural network: detected SWs are 
marked with red; absence of SWs is marked with blue. C and D. Lower traces indicate the 
examples of ambiguous results of neural network SW (C) and noise (D) recognition (see 
text for details).
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episode (Figures 3A and 3D). However, it also detected a relatively large 
number of SWs during waking state (Figure 3A) and visual inspection 
confirms that many of the detected events have features of real SWs 
(Figure 3B). Slow waves were practically absent during REM sleep. 

Discussion
We proposed a new method of SW detection with the use of artificial 

neural network that uses the same characteristics for SW recognition 
as the classical visual approach. The main advantage of this method 
is the very high speed of detection of defined events; therefore, it can 
be effectively used to analyze long-lasting recordings and for on-line 
SW detection. The main limiting factor is that it requires an observer 
experienced enough to visually distinguish between SWs and Noise to 
preselect corresponding templates for each recording electrode and it 
takes some time to train the artificial neural network to detect SWs.

The time spent for the neural network training was paid off by 
fast execution of the algorithm of the neural network application. We 
used splitting of the original signal into short segments referenced 
to particular points of the delta-filter trace that allowed not only 
to create a database of the templates but also to reduce the number 
of computations and thus to increase the speed of analysis without 
losing the data. Even though the rate of correct semi-automatic event 
detection was high, the proposed method was not ideal if high precision 
detection was required. The variability of SW shapes, presence of 
relatively high amplitude activity in higher frequency bands and offsets 
in the recorded signal due to animal movement artefacts are among the 
factors that contribute to the false-negative and false-positive results. 
The detection rate can be improved by careful reselection of templates 
for neural network training or by post-processing artefact removal 
procedure. 

The obtained information about each SW can be used to extract 
various features of the detected elements such as their number, 
amplitude, duration, shape peculiarities, co-incidence, density in 
relation to time of the day and the background LFP that can enable 
comparison of SWs between species and enrich translational studies of 

the normal SWS and pathological SW activity.

The presence of SWs during wake and REM may be a specific feature 
of activated states appearance in mice and reflect instability of their 
states of vigilance. Previous work on sleep-deprived rats demonstrated 
the presence of isolated SWs during wake [25]. Large amplitude 
membrane potential fluctuations and corresponding EEG waves could 
be recorded during quiet, but not active wakefulness in mice [26-28]. 
The proposed method of SW detection using artificial neural network 
can provide an unbiased characterization of SW activity in different 
states of vigilance.

Thus, the proposed algorithm of SW detection with the neural 
network pattern recognition can be recommended for use in analysis 
of long-lasting LFP recordings.
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