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Abstract
This article illustrates the importance of melt curve analysis (MCA) in interpretation of mild nutrogenomic micro(mi)RNA expression data, by measuring the 
magnitude of the expression of key miRNA molecules in stool of healthy human adults as molecular markers, following the intake of Pomegranate juice (PGJ), 
functional fermented sobya (FS), rich in potential probiotic lactobacilli, or their combination. Total small RNA was isolated from stool of 25 volunteers before and 
following a three-week dietary intervention trial. Expression of 88 miRNA genes was evaluated using Qiagen’s 96 well plate RT2 miRNA qPCR arrays. Employing 
parallel coordinates plots, there was no observed significant separation for the gene expression (Cq) values, using Roche 480® PCR LightCycler instrument used in 
this study, and none of the miRNAs showed significant statistical expression after controlling for the false discovery rate. On the other hand, melting temperature 
profiles produced during PCR amplification run, found seven significant genes (miR-184, miR-203, miR-373, miR-124, miR-96, miR-373 and miR-301a), which 
separated candidate miRNAs that could function as novel molecular markers of relevance to oxidative stress and immunoglobulin function, for the intake of polyphenol 
(PP)-rich, functional fermented foods rich in lactobacilli (FS), or their combination. We elaborate on these data and present a detailed review on use of melt curves 
for analyzing nutigenomic miRNA expression data, which initially appear to show no significant expressions, but are actually more subtle than this simplistic view, 
necessitating the understanding of the role of MCA for a comprehensive understanding of what the collective expression and MCA data collectively imply.
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Introduction
Gene expression and its control by miRNAs

Cell’s gene expression profile determines its function, phenotype 
and cells’ response to external stimuli, and thus help elucidate various 
cellular functions, biochemical pathways and regulatory mechanisms 
[1]. Several gene expression profiling methods at the RNA level have 
emerged during past years and have been successfully applied to cancer 
research. Profiling by microarrays allows for the parallel quantification 
of thousands of genes from multiple samples simultaneously, using a 
single RNA preparation, and has become valuable because microarrays 
are convenient to use, do not require large-scale DNA sequencing, 
gives a clear idea of cells’ physiological state, and is considered a 
comprehensive approach to characterize cancer molecularly, as seen in 
studies on colon cancer [1].

Control of gene expression has been studied by miRNA molecules, 
a small non-coding RNA molecule (18–24 nt long), involved in 
transcriptional and post-transcriptional regulation of gene expression 
by inhibiting gene translation. MiRNAs silence gene expression 
through inhibiting mRNA translation to protein, or by enhancing the 
degradation of mRNA. Since first reported in 1993 [2], the number of 
identified miRNAs in June 2014, version 14.0, the latest miRBase release 
(v20) [3] contains 24,521 miRNA loci from 206 species, processed to 
produce 30,424 mature miRNA products. MiRNAs are processed by 
RNA polymerase II to form a precursor step which is a long primary 

transcript. Pri-miR is converted to miRNA by sequential cutting with 
two enzymes belonging to a class of RNA III endonucleases, Drosha 
and Dicer. Drosha converts the long primary transcripts to ~70 nt 
long primary miRNAs (pri-miR), which migrate to the cytoplasm by 
Exportin 5, and converted to mature miRNA (~22 net) by Dicer [4]. 
Each miRNA may control multiple genes, and one or more miRNAs 
regulate a large proportion of human protein-coding genes, whereas 
each single gene may be regulated by multiple miRNAs [5]. MiRNAs 
inhibit gene expression through interaction with 3-untranslated regions 
(3 UTRs) of target mRNAs carrying complementary sequences [4,5]. 

 Effect of antioxidant polyphenols --abundant in Mediterranean 
diets-- on gene expression unraveled by the availability of molecular 
biology techniques, reveals our adaptation to environmental changes 
[6]. Efforts to study the human transcriptome have collectively been 
applied to tissue, blood, and urine (i.e., normally sterile materials), as 
well as stool (a non-sterile medium). Extraction protocols that employ 
commercial reagents to obtain high-yield, reverse-transcribable (RT) 
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RNA from human stool in studies performed on colon cancer have 
been reported [7,8].

Micro(mi)RNAs as biomarkers, and their roles in disease 
processes

A biomarker is believed to be a characteristic indicator of normal 
biological processes, pathogenic processes, or pharmacological 
responses to therapeutic interventions. In contrast, clinical endpoints 
are considered as variables representing a study subject’s health 
from his/her perspective [9]. A variety of biomarkers exist today as 
surrogates to access clinical outcomes in diseases, predict the health 
of individuals, or improve drug development. An ideal biomarker 
should be safe and easily measured, is cost effective to follow up, is 
modifiable with treatment, and is consistent across genders and various 
ethnic groups. Because we never have a complete understanding of all 
processes affecting individual’s health, biomarkers need to be constantly 
reevaluated for their relationship between surrogate endpoints and true 
clinical endpoints [10]. MiRNAs have been used herein as biomarkers 
for assessing the effect of intake of PP-rich or fermented foods on the 
expression of 88 miRNA genes known to influence cancer.

Disease modulation by nutrients

Cardiovascular diseases due to hypercholesterolemia are 
considered a risk factor for Chronic Heart Disease (CHD), and chronic 
degenerative diseases --caused wholly or partially by dietary patterns-- 
represent the most serious threat to public health [11,12]. Moreover, 
nearly one-third of all cancer deaths are due to poor nutrition, lack 
of physical activity, and obesity; and these risk factors account for 
nearly 80% of large intestine, breast, and prostate cancers. Chronic 
inflammation is considered a common factor that contributes to the 
development and progression of these illnesses, which are caused by 
and/or modified by diet [13].

 Pomegranate juice (PGJ) and derived products are considered the 
richest sources of polyphenolic compounds, with positive implication 
on TC, LDL-C and TG plasma lipid profile [14]. Moreover, anthocyanin 
and ellagitannins pigments, mainly punicalagins, inhibit the activities 
of enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and sterol 
O-acyltransferase, important in cholesterol metabolism [15]. Probiotic 
bacteria also contribute to lowering plasma hyper cholestrolemia due 
to the above mechanism, caused by the probiotic bile salt hydrolase 
(BSH) activity. This probiotic enzyme hydrolyses conjugates both 
glycodeoxycholic and taurodeoxycholic acids to hydrolysis products, 
inhibiting cholesterol absorption and decreasing reabsorption of bile 
acid [16]. 

 Colonic microbiota is a central site for the metabolism of dietary 
PP and colonization of probiotic bacteria. A dietary intervention 
study with probiotic strains from three Lactobacillus species (L. 
acidophilus, L. casei and L. rhamnosus) given to healthy adults, showed 
that bacterial consumption caused the differential expression of from 
hundreds to thousands of genes in vivo in the human mucosa [17]. The 
interaction of PP with the gut microbiota influences the expression of 
some human genes (i.e., nutritional transcriptomics), which mediates 
mechanisms underlying their beneficial effects [17]. Similar in vivo 
mucosal transcriptome findings have been reported when adults were 
given the probiotic L. plantarum, illustrating how probiotics modulate 
human cellular pathways, and show remarkable similarity to responses 
obtained for certain bioactive molecules and drugs [18].

Materials and methods 
Participants

Study subjects were 25 healthy adults, 20 to 34 years old; exclusion 
were: absence of metabolic diseases, no use of medication for the last 
6 weeks, and no signs of allergy or hypersensitivity to food or ingested 
material. Compliance with the supplementation in all subjects was 
satisfactory, as assessed daily, and. all subjects continued their habitual 
diets throughout the study. The research protocol was approved by the 
institution review board, and all subjects gave written consent prior to 
their participation in the study.

Design of the study

Figure 1 shows the design of the nutrigenomic randomized study. 
Estimated dietary intake was assessed by 3 repeated food records, 
one week before they were enrolled in the trial. The average portion 
size consumed, as well as composition data values from nutrient 
composition of the food were combined to assess average daily energy 
and nutrient intakes by the “nutrisurvey” software program. The 
characteristics of the voluntary subjects who were enrolled in the study, 
the mean daily energy intake, as well as selected macro nutrients are 
presented in Table 1.

Supplements 

Pomegranate was obtained in bulk from the Obour Public Market, 
Cairo, Egypt. Pomegranate fruits were peeled and the juice was 
extracted using a laboratory pilot press (Braun, Germany). The juice 
was distributed in aliquots of 100 or 250 grams in air tight, light-
proof polyethylene bottles, and frozen at −20˚C, where pomegranate 
polyphenols remained stable. Sour sobya, a fermented rice porridge 
containing per gram 3 × 107 cfu diverse lactic acid bacteria (LAB) and 1 
× 107 cfu Sacharomyces cerivisiae. with added ingredients such as milk, 
sugar and grated coconut, was purchased twice a week from the retail 
market, and saved in the refrigerator. Sobya is fermented rice. Table 
2 illustrates the proximate initial and final mean urinary polyphenols, 

Enroll 25 Volunteers (Age ~ 27 years, BMI ~24 kg)→Carry Anthropometric Measurements, Food Records & Collect Stool/Blood/Urine → 

Study 4 Groups for 3 weeks [Control, Pomegranate Juice (250g PJ); Fermented Sobya (167g FS) & PJ + FS]→ Collect Stool, Blood & Urine 

→Extract total Small RNA→ Prepare ss-cDNA→ Use RT2 miRNA PCR Array 96-Well Plate for miRNAs Expression→ Perform qPCR →  

Analyze Data Statistically & Bioinformatically 

Figure 1. Study design

Parameter Unit Dietary supplements

   
Control 
(Portion 
served)

FS (Portion 
served)

PGJ 
(Portion 
served)

FS+PGJ 
(Portion 
served)

           
Portion Size g – 170 250 150+10 
Total Solids g – 40.01 17.75 48

Carbohydrate g – 51.1 32.75 59
Dietary Fiber g – 54 0.25 48.6

Energy kcal – 263 135 290

Lactobacillus diverse cfu/
serving size – – 5.1 x 109 4.5 x 109

Yeast cfu/serving 
size – – 2.77 x 1010 2.44 x 1010

Total PP mg*/portion 
g – – 519.1±8.75 207.65±3.5

Antioxidant 
activity (AEAC)** – 7.74±1.33 11.35±2.2 11.37±2.2

*mg galic acid equivalent (GAE), FS: Functional fermented sobya; PGJ: Pomegranate juice
**mmol ascorbic acid equivalent antioxidant activity [5]

Table 1. Composition of the supplements
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plasma and urinary antioxidative activity, urinary thiobarbituric acid 
reactive species (TBARS), and erythrocytic glutathione-S-transferase 
(GST). 

Stool collection and storage

Stool was obtained from the 25 healthy adults, twice at day 0 and 
three weeks after the dietary intervention. All stools were collected with 
sterile, disposable wood spatulas in clean containers, after stools were 
freshly passed, and then placed for storage into Nalgene screw top vials 
(Thermo Fisher Scientific, Inc., Palo Alto, CA, USA), each containing 2 
ml of the preservative RNA later (Applied Biosystems/Ambion, Austin, 
TX, USA), which prevents the fragmentation of the fragile mRNA 
molecule [7], and vials were stored at – 70 °C until samples were 
ready for further analysis. Total small RNA, containing miRNAs, was 
extracted from all frozen samples at once, when ready, and there was no 
need to separate mRNA containing small miRNAs from total RNA, as 
small total RNA was suitable to make ss miRNA c-DNA. 

Extraction of total small RNA 

A procedure used for extracting small total RNA from stool was 
carried out using a guanidinium-based buffer, which comes with the 
RNeasy isolation Kit®, Qiagen, Valencia, CA, USA, as we have previously 
detailed [7]. DNase digestion was not carried out, as our earlier work 
demonstrated no difference in RNA yield or effect on RT-PCR after 
DNase digestion [7]. The time to purify aqueous RNA from all of the 25 
frozen stool samples was ~ three hours. Small RNA concentrations were 
measured spectrophotometrically at λ 260 nm, 280 nm and 230nm, 
using a Nano-Drop spectrophotometer (Themo-Fischer Scientific). The 
integrity of total RNA was determined by an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Inc., Palo Alto, CA, USA) utilizing the RNA 
6000 Nano LabChip®. RNA integrity number (RIN) was computed for 
each sample using instrument’s software [7].

Preparation of ss-cDNA for molecular analysis

The RT2 miRNA First Strand Kit® from SABiosciences Corporation 
(Frederick, MD, USA) was employed for making a copy of ss-DNA in a 
10.0 µl reverse transcription (RT) reaction, for each RNA samples in a 
sterile PCR tube, containing 100 ng total RNA, 1.0 µl miRNA RT primer 
& ERC mix, 2.0 /µl 5X miRNA RT buffer, 1.0 µl miRNA RT enzyme 
mix, 1.0 µl nucleotide mix and Rnase-free H2O to a final volume of 10.0 
µl. The same amount of total RNA was used for each sample. Contents 
were gently mixed with a pipettor, followed by brief centrifugation. 
All tubes were then incubated for 2 hours at 37oC, followed by heating 
at 95oC for 5 minutes to degrade the RNA and inactivate the RT. All 
tubes were chilled on ice for 5 minutes, and 90 µl of Rnase-free H2O 
was added to each tube. Finished miRNA First Strand cDNA synthesis 
reactions were then stored overnight at -20oC [7].

Use of cancer RT2 miRNA PCR array 96-well plate to study 
miRNAs’ expressions

We used a SABiosciences RT2 miRNA qPCR Array Plate System for 
Human (Qiagen) to analyze miRNA expression using real-time, reverse 
transcription PCR (RT-qPCR) as a sensitive and reliable quantitative 
method for miRNA expression analysis. The arrays employ a SYBR 
Green real-time PCR detection system, which has been optimized 
to analyze the expression of many mature miRNAs simultaneously. 
Each 96-well array plate contains a panel of primer sets for 88 relevant 
miRNA focused pathways (one universal primer and one gene-specific 
primer for each miRNA sequence), plus four housekeeping genes 
(Human SNORD 48, 47 and 44, and U6), and two RNA and two PCR 
quality controls. Duplicate RT Controls (RTC) to test the efficiency of 
the miRNA RT reaction, with a primer set that detects the template 
synthesized from the built in miRNA External RNA Control (ERC). 
There are duplicate RT controls (RTC) to test the efficiency of the 
miRNA RT process, with a primer set to detect the template synthesized 
from the kit’s built-in miRNA External RNA Control (ERC). There is 
also duplicate positive PCR controls (PPC) to test the efficiency of the 
PCR process, using a per-dispensed artificial DNA sequence and the 
primer set that detects it. The two sets of duplicate control wells (RTC 
and PPC) also test for inter-well, intra-plate consistency. The human 
RT2 miRNA PCR Arrays reflect miRNA sequences annotated by the 
Sanger miRBase Release 14. Figure 2 shows the layout of the MAH-
102F array. 

Performing real-time quantitative polymerase chain reaction 
(qPCR)

We used RT2 SYBR Green qPCR Master Mix (SBA Biosciences) 
to obtain accurate results from our qPCR arrays. The following 
components were mixed in a 15-ml tube for 96-well plate format: 1275 
µl of 2X RT2 SYBR Green PCR Master Mix, 100 µl of diluted first strand 
reaction, 1175 µl of ddH2O (total volume 2550 µl, of which 2400 was 
needed for 96 reactions, each well having 25 µl, with150 µl cocktail 
remaining.

We employed a Roche LightCycler 480® 96-well block PCR Machine 
(Roche, Mannheim, Germany) to carry out quantitative real-time 
miRNA expressions. When ready, we removed the needed miRNA 
qPCR Arrays, each wrapped in aluminum foil, from their sealed bags, 
added 25 µl of the same cocktail to each well, adjusted the ramp rate to 
1oC/sec. We used 45 cycles in the program, and employed the Second 
Derivative Maximum method, available with the LightCycler 480® 
software for data analysis [19]. We first heated the 96 well plate for 
10 min at 95oC to activate the HotStart DNA polymerase, then used 
a three-step cycling program (a 15 seconds heating at 95oC to separate 
the ds DNA, a 30 seconds annealing step at 60oC to detect and record 

Parameter Unit Control Sobya Pomegranate Sobya +Pomegranate
    Baseline Final Baseline Final Baseline Final Baseline Final
    X±SE X±SE p X±SE X±SE p X±SE X±SE p X±SE X±SE p
                   

Urinary polyphenol GAE/mg creat 10.36±1.8 8.11±2.2 11.84±6.2 9.86±1.8 5.70±1.4 55.23±21.7 <0.05 10.40±3.2 21.62±7.3
Urinary antioxidant activity AEAC/mg creat* 9.74±2.0 8.13±2.7 3.89±09 10.30±2.3 7.18±0.9 46.57±18.0 <0.05 10.90±2.4 20.25±3.9

Urinary TBARS ug/mg creat 83.04±12.1 75.17±15.3 82.77±27.8 29.97±4.4 173.93±44.8 51.48±8.2 <0.05 157.70±47.8 40.62±8.3
Plasma antioxidant AEAC/1oo ml 6.36±2.81 5.99±2.66 3.70±0.33 4.55±0.27 3.64±0.30 5.92±0.68 <0.05 2.78±0.11 4.49±0.58

E-GST activity IU/g Hb 5.94±3.3 5.45±4.1 4.26±0.5 7.21±0.8 <0.05 4.73±1.0 8.34±1.0 4.56±1.0 6.90±1.0

X±SE: Mean ± Standard Error, *:mmol ascorbic acid equivalent antioxidant capacity/mg creatinine; GAE: gallic acid equivalent, Mean values are significantly different if the P-values are 
less than 0,05 (P<0.05) [5]

Table 2. Initial and final mean urinary polyphenols, plasma and urinary antioxidative activity, urinary TBARS and erythrocytic GST
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SYBR Green fluorescence at each well during each cycle, and a final 
heating step for 30 seconds at 72oC). Each plate was visually inspected 
after the run for signs of evaporation from the wells. Data were analyzed 
using the 2-ΔΔCt method [20]. Resulting threshold cycle values for all 
wells were exported to a blank Excel sheet for analysis. We also ran a 
Dissociation (Melt) Curve Program after the cycling program [21] and 
generated a first derivative dissociation curve for each well in the plate, 
using the LC (Lightcycler’s®) software.

Statistical and bioinformatics analysis

Gene expressions were standardized by dividing the SNORD48 
value while raw melting temperatures were used. Analysis were done 
using the software R (version 3.1.3), with the package MASS [22]. 
One individual had so many missing values that this case was not 
used in the analysis so that the number of individuals is 24. For each 
standardized gene and each melting temperature, a one-way ANOVA 
was used to obtain a p-value. There were four levels of the explanatory 
variable: Control, Sobya, Pom, and Both. Parallel coordinate plots 
(parcoord command in R) [23] were used to visualize the data for 
each gene and each melting temperature. Coordinates were ordered 
using the magnitude of the p-value. The two sample t-test was used 
on gene expression to compare control to sobya and control to Both 
(t.test command in R with var.equal=FALSE). P-values were adjusted 
to control for false discovery rate. The method is outlined in [24] 
Benjamini and Yekutieli (p.adjust command in R with method=‘BY’).

We have bioinformatically correlated the 2-7 or 2-8 complement 
nucleotide bases in the mature miRNAs with the untranslated 3’ region 
of target mRNA (3’ UTR) of a message using a basic algorithm such as 
Broad’s Institute’s TargetScan [25] http://www.targetscan.org/archives.
html, which provides a precompiled list for their prediction. 

Results
At base line, all participants in the trial excreted urinary total 

polyphenols; however, the inter individual variation was considerably 
high (4.89-12.59 mg GAE/100 ml urine).

Composition of the three supplements (FS, PGJ and FS + PGJ 
served to the volunteers is presented in Table 1. The initial and final 
mean urinary polyphenols, plasma and urinary antioxidative activity, 
urinary TBARS and erythrocytic GST, as well as the daily portion of 
PGJ provided 21 mg PP /day, and the combination of PGJ – FS was 9 
mg PP /day, as presented in Table 2. 

Figure 2 is a lay out of RT2 miRNA PCR Array Human Cancer 
microRNA (MAH-102A). Figure 6 is a graphical representation of 

the parallel plot coordinates of the studied miRNA genes for melting 
temperature curve analysis. The genes were ordered using the p-values 
of a one-way ANOVA based on groups. Genes with the smallest 
p-values are presented first. Figures 3 through 5 represent characteristics 
of melt curve analysis protocols.

Figure 6a show eight employed control genes (Snord48, Snord47, 
Snord44, RNUU6-2. MiRTC1, miRTC2, and PPC1, PPC2). In Figure 
6b, five miRNA genes (miR-184, miR-203, miR-124, miR-96 and miR-
378) show clear separation. Gene miR-184 has the highest separation 
from the control gene. MiR-203 genes is hardly amplified in Sobya, 
while it is highly expressed in Pomegranate. For miR-373 gene, the 
control group is different from the other three treatment groups. For 
genes miR-124, miR-96 and miR-378, Pomegranate is well separated 
from other three groups. In Figure 6c, for gene miR-301a, the control 
is separated from the other three groups. Additional miRNA genes are 
not shown, as their p-values are greater (less significant), and the graphs 
did not show any meaningful separations.

 Bioinformatics analysis using the TargetScan algorithm [25] for 
up-regulated and down-regulated mRNAs genes is shown in Table 3. 
The program yielded 21 mRNA genes encoding different cell regulatory 
functions. The first 12 of these mRNAs were found with the DAVID 
program [26] to be active in the nucleus and related to transcriptional 
control of gene regulation. For downregulated miRNAs, the DAVID 
algorithm found the first four of these mRNAs to be clustered in cell 
cycle regulation categories.

Discussion
Suitability of stool as a medium for developing a sensitive 
molecular biomarker screen

Stool represents a challenging environment, as it contains many 
substances that may not be consistently removed in PCR, in addition 
to the existence of certain inhibitors, which all must be removed for a 
successful PCR reaction. Our results [27] and others [8,28] have shown 
that the presence of non-transformed RNA and other substances in 
stool do not interfere with measuring miRNA expressions, because of 
the use of suitable PCR primers, and the robustness of the real-time 
qPCR method [19]. Besides, stool colonocytes contain much more 
miRNA and mRNA than that available in free circulation, as in plasma 
[29], all factors that facilitate accurate and quantitative measurements

PCR amplification and the effect of inhibitory substances

PCR has been used for miRNAs quantification because of its extreme 
sensitivity. This method, however, could lead to errors because of the 

Figure 2. Array layout

http://www.targetscan.org/archives.html
http://www.targetscan.org/archives.html
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presence of inhibiting substances, representing diverse compounds 
with different properties and mechanisms of action, which induce their 
effects by direct interaction with DNA that will be amplified, or through 
interference with the employed thermostable DNA polymerase [30]. 

 Agents that reduce Mg2+ availability or interfere with the binding 
of Mg2+ to DNA polymerase could inhibit the PCR reaction [31]. 
Calcium ion is another inorganic inhibiting substance, although most 
PCR inhibitors are organic compounds (e.g., bile salts, sodium dodecyl 
sulphate, urea, phenol, ethanol, polysaccharides), as well as proteins 
(e.g., collagen, hemoglobin, immunoglobin G and protineases) [32]. 
The existence of polysaccharides in stool could decrease the capacity 
to resuspend precipitated RNA or disrupt the enzymatic reaction by 
mimicking the structure of nucleic acid. The DNA template of the 
PCR, as well as primers binding to DNA template can be inhibited by 
nucleases and other inhibitors, [33]. Remedial strategies for removal of 
inhibitors in stool, such as additional extraction steps, sephadex G-200 
chromatography, heat treatment before the PCR, chloroform extraction, 
treatment with activated carbon, adding BSA, or dilution of sample, 
have been suggested [34]. We found the dilution method, in which the 

extracted ribonucleic acid (RNA) is diluted in the reaction mixture with 
distilled water or an isotonic buffer, to be the most practical method for 
preventing PCR inhibition using a commercially available diluent [35].

Role of biomarker miRNAs in various diseases

MiRNA functions were shown to regulate development [36] and 
apoptosis [37], and dysregulation of miRNAs has been associated 
with many diseases such as various cancers [38], heart diseases 
[39], kidney diseases [40]. nervous system diseases [41], alcoholism 
[42], obesity [43], auditory diseases [44], eye diseases [45], skeletal 
growth defects [46], as well as key role in host–virus pathogenesis of 
viral diseases [47]. A negative correlation was found between tissue 
specificity of interactions and miRNA in a number of diseases, and an 
association between miRNA conservation and disease, and predefined 
miRNA groups allow for identification of novel disease biomarkers 
at the miRNA level [48]. Specific miRNAs are crucial in oncogenesis 
[49], effective in classifying solid [50] and liquid tumors (51], and 
function as oncogenes or tumor suppressor genes [52]. MiRNA genes 
are often located at fragile sites, as well as minimal regions of loss of 
heterozygosity, or amplification of common breakpoints regions, 
suggesting their involvement in carcinogenesis [53]. MiRNAs have 
shown to serve as biomarkers for cancer diagnosis, prognosis and/
or response to therapy [54,55]. Profiles of miRNA expression differ 
between normal tissues and tumor types, and evidence suggests that 
miRNA expression profiles can cluster similar tumor types together 
more accurately than expression profiles of protein-coding messenger 
(m)RNA genes [56]. Besides, small miRNAs (~18-22 nt long) are stable 
molecules than the fragile mRNA [27].

Melting curve analysis (MCA)

MCA is an assessment of dissociation characteristics of 
dsDNA during heating, leading to rise in absorbance, intensity and 
hyperchromicity. The temperature at which 50% of DNA is denatured 
is referred to as melting point, Tm. 

Gathered information can be used to infer the presence of single 
nucleotide polymorphism (SNP), as well as clues to molecule’s mode 
of interaction with DNA, such as intercalator slots in between base 
pairs through pi stacking and increasing salt concentration, leading 
to rise in melt temperature, whereas pH can affect DNA’s stability, 
leading to lowering of its melting temperature [57]. Originally, strand 
dissociation was measured using UV absorbency, but now techniques 
based on fluorescence measurements using DNA intercalating 
fluorophores such as SYBR Green I, EvaGreen, or Fluorophore-labelled 
DNA probes (FRET probes) when they are bound to ds DNA [58] are 
now common. Specialized thermal cyclers that run the qPCR, such 
as Roche LightCycler(LC) 480®, used in this study, is programmed to 
produce the melt curve after the amplification cycles are completed. 
As the temperature increases, dsDNA denatures becoming ss and the 
dye dissociates, resulting in decrease in fluorescence. The graph of the 
negative first derivative of the melting-curve (-dF/dT) represents the 
rate of change of fluorescence in the amplification reaction and allows 
pin-pointing the temperature of dissociation (50% dissociation) using 
formed peaks to obviate or complement sequencing efforts [59]. 

Up-regulated target mRNA genes 
BCL11B, CUGBP2, EGR3, DLHAP2, NUFIP2, KLF3, MECP2, ZNF532, APPLI1, NFIB, SMAD7, SNF1LK, ANKRD52, C17orf39, FAM13A1, GLT8D3, KIAA0240, PCT, SOCS6, 
TNRC6B and UHRF1BP1
Down-regulated target mRNA genes 
TGFB1, CKS2, IGF2, KLK10, FLNA, CSE1L, CXCL3, DPEP1 AND GUCA2B

Table 3. Up-regulated and down-regulated target mRNA genes detected by a DAVID Bioinformatics algorithm

Figure 3. Thermophoresis of nucleic acids over a temperature gradient
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The melting temperature (Tm) of each product is defined as the 
temperature at which the corresponding peak maximum occurs. 
The MCA confirms the specificity of the chosen primers, as well as 
reveals the presence of primer-dimers, which usually melt at lower 
temperatures than the desired product, because of their small size, and 
their presence severely reduce the amplification efficiency of the target 
gene as they compete for reaction components during amplification, 
and ultimately the accuracy of the data. The greatest effect is observed at 
the lowest concentrations of DNA, which ultimately compromises the 
dynamic range. Moreover, nonspecific amplifications may result in PCR 
products that melt at temperatures above or below that of the desired 
product. Optimizing reaction components (Mg2+, detergents, SYBR 
Green I concentration) and annealing temperatures aid in decreasing 
nonspecific product formation. Adequate product design, however, 
is considered to be the best method to avoid nonspecific products’ 
formation. Including a negative control will determine if there is a 
coamplified genomic DNA [57,58]. The formula for Tm calculation is 
shown by the equation:

 Tm = ____ ΣΔHo
n-n –-- 273.15 , 

 ΣΔSo
n-n + RLnCT

 where thermodynamic parameter ΔHo is Enthalpy changes, ΔSo 
parameter is Entropy changes, and CT is total strand concentration; 
these free-energy parameters predict Tm of most oligonucleotide 
duplexes to within 5oC; and permit prediction of DNA, as well as 
RNA duplex stabilities. It should be noted that Tm depends on the 
conditions of the experiment, such as oligonucleotide concentration, 
salts’ concentration, mismatches and single nucleotide polymorphisms 
(SNPs) [60]. OligoAnalyzer® Tool [www.idtdna.com/analyzer/
Applications/Oligoanalyzer] allows for calculating the Tm of employed 
nucleotides.

 Microscale thermophoresis is a method that determines the 
stability, length, conformation and modifications of DNA and RNA. 
It relies on the directed movement of molecules in a temperature 
gradient that depends on surface characteristics of the molecule, such 
as size, charge and hydrophobicity. By measuring thermophoresis 
of nucleic acids over a temperature gradient, one finds clear melting 
transitions, and can resolve intermediate conformational states (Figure 
3). These intermediate states are indicated by an additional peak in the 
thermophoretic signal preceding most melting transitions (Figure 3B) 
[59,61-63]. Agarose gel visualization is the gold standard for analyzing 
PCR products. Alternatively to reduce the number of gels needed to 
conform the presence of a single amplicon, “uMelt” melting curve 
prediction software (http://www.dna.utah/umelt/umelt.html) can be 
used to confirm that a single amplicon is generated by PCR [64]. This 
program predicts melt curves and their derivatives for qPCR-length 
amplicons and is suited to test for multiple peaks in a single amplicon 
product.

 …Because SYBR Green I dye has several limitations, including 
inhibition of PCR, preferential binding to CG-rich sequences and 
effects on MCA, two intercalating dyes SYTO-13 and SYTO-82 
were tried and did not show these negative effects, and SYTO-82 
demonstrated a 50-fold lower detection limit [65], as well as best 
combinations of time-to threshold (Tt) and signal-to-noise ratio (SNR) 
[66]. To optimize performance of the buffer, a PCR mix supplemented 
with two additives, 1M 1,2-propanediol and 0.2 M trehalose, were 
shown to decrease Tm, efficiently neutralize PCR inhibitors, and 
increase the robustness and performance of qPCR with short amplicons 
[67]. “uAnalyzeSM“ is another web-based tool, similar to uMELT, for 

analyzing high-resolution melting PCR products’ data, in which 
recursive nearest neighbor thermodynamic calculations are used to 
predict a melt curve. Using 14 amplicons of CYBB [cytochrome b-245 
heavy chain, also known as cytochromae b (558) subunit], the main +/- 
standard deviation, the difference between experimental and predicted 
fluorescence at 50% helicity was -0.04 +/- 0.48oC [68].

MCA has been an effective and economical way for identification 
of virus stains [69], genes [70], bacterial strains [71], insect species [72], 
temperature validation of PCR cyclers [73], detection of translocations 
in lymphomas [74] and RNA interference/gene silencing [61]. Thus, 
the presence of double peaks during MCA, is not always indicative 
of non-specific amplification, and other methods such as agarose gel 
electrophoresis, and use of melt curve prediction software [61,68] 
are also needed in odder to determine the purity of an amplicon. For 
example, Figure 5A shows a single peak for exon 17b of CFTE (Cystic 
Fibrosis Transmembrane Conductance Regulator) gene, whereas the 
melt curve for an amplicon from exon 7 of CFTR shows two peaks, which 
could be interpreted as indicative of two separate amplicons (Figure 
5B). However, analysis by agarose gel electrophoresis showed only one 
peak. To solve this conflict, an understanding of how melt curves are 
produced is needed. It should be emphasized that intercalating dyes 
used in qPCR, such as SYBR Green, will fluoresce only when the dye 
is bound to ds DNA, but not in the presence of a ssDNA, or when the 
DNA is free in solution. After the amplification cycle in qPCR, the 
instrument starts at a preset temperature above the primer Tm, and as 
the temperature increases dsDNA denatures becoming ssDNA and the 
dye therefore dissociates from the ssDNA (Figure 3A). The change in 
slope of this curve when blotted as a function of temperature to obtain 
a melt curve for CFTR exom 17b (Figure 4A). However, if we allow for 
the possibility that DNA my assume an intermediate state that is neither 
dsDNA or ssDNA, raw date from CFTR exon 7 melt will look Figure 4B. 
This could happen when there are regions of the amplicon that are more 
stable (e,g., G/C rich), which do not melt immediately, but maintain 
their ds configuration until the temperature becomes sufficiently high 
to melt it, which results in two phases (Figure 4B). Additional sequence 
factors, such as amplicon misalignment in A/T rich regions, and designs 
that have secondary structure in the amplicon region, can also produce 
products that melt in multiple phases. 

 An advancement of MCA, referred to as High Resolution Melt 
(HRM), discovered and developed by Idaho Technology and the 
University of Utah [75, http://www.dna.utah.edu/Hi-Res/TOP_Hi-
Res%20Melting.html], which has been useful for mutation detection and 
SNPs, enabling differentiation of homozygous wildtype, heterozygous 
and homozygous mutant alleles from the dissociation patterns. HRM 
has been used to identify variation in nucleic acid sequences, enabled 
by use of a more advanced software, and is therefore less expensive 
than probe-based genotyping methods, and allows for identification of 
variants quickly and accurately [76]. This method has been widely used 
in molecular diagnosis and for detection of mutations [77-79]. 

In our study, we found the melt curve analysis to be a useful and an 
informative method because after the statistical analysis carried on our 
miRNA expression samples showed no preferential expression of any of 
the 88 miRNA genes, a melt curve analysis on the same samples found 
that we could distinguish 7 miRNA (miR-184, miR-203, miR-373, 
miR-124, miR-96, miR-373 and miR-301a), due to different separation 
melting profiles (Figure 6). Thus, we believe that it is imperatives for 
investigators to run this kind of analysis on samples that particularly 
may not show expression differences in their mRNA or miRNA studied 
genes, such as nutritional samples.

http://www.iddna.com/analyzer/Applications/Oligoanalyzer
http://www.iddna.com/analyzer/Applications/Oligoanalyzer
http://www.dna.utah/umelt/umelt.html
http://www.dna.utah.edu/Hi-Res/TOP_Hi-Res Melting.html
http://www.dna.utah.edu/Hi-Res/TOP_Hi-Res Melting.html
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Figure 4. Melt curves for CFTR gene

Figure 5. Analysis of cystic fibrosis transmembrane conductance regulator gene

Bioinformatic methods to correlate seed miRNA Data with 
messenger(m)RNA Data 

To provide information about complex regulatory elements, we 
correlated miRNA results with our available available mRNA data [80], 
as well as those data available in the open literature using computer 
model TargetScan [81,82]. The authenticity of functional miRNA/
mRNA target pair once identified was validated by fulfilling four basic 
criteria: a) miRNA/mRNA target interaction can be verified, b) the 
predicted miRNA and mRNA target genes are co-expressed, c) a given 
miRNA must have a predictable effect on target protein expression, and 
d) miRNA-mediated regulation of target gene expression should equate 

to altered biological function. Bioinformatics showed 21 upregulated 
mRNA genes encoding different cell regulatory functions, and 12 
of these mRNAs were found to be active in the nucleus and related 
to transcriptional control of gene regulation. For down-regulated 
miRNAs, four of the mRNAs appeared to be clustered in cell cycle 
regulation categories (Table 3) [27]. 

Clinical significance 

The clinical significance of the study presented above is that using 
melting temperatures for analyzing nutrient-gene data is a promising 
new approach for identifying key regulatory miRNA genes related to 
metabolites rich in polyphenols, probiotic lactobacilli, or combinations 
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Figure 6. Graphical representation of parallel plot coordinates of the studies miRNA 
genes
The genes were ordered using the p-values of a one-way ANOVA based on groups. Genes 
with the smallest p-values are presented first. Figure 1A below shows control genes, while 
in Figures 1B, and C, five miRNA genes show separation. 

of the two metabolites. Melt curve analysis is a powerful novel 
approach because after the statistical analysis carried on our miRNA 
samples produced negative gene expression (Cq) results, running 
melt curve analysis on the same samples identified 7 of the 88 miRNA 
genes imprinted on the highly sensitive focused PCR arrays (~ 8% 
of the genes), and using parallel coordinates plots showed noticeable 
separation of melt curve profiles. Thus, we believe that it is imperatives 
for investigators to run this kind of MCA on nutrition samples that are 
mild in nature, and many not always show significant differences in 
the expression of studied miRNA genes. The same analysis can also be 
envisioned for messenger mRNA amplifications, using mRNA arrays, 
and then using bioinformatics resources to correlate mRNA with 
miRNA data. 

We are also planning to validate these initial results by carrying out 
additional miRNA nutrigenomic expression studies, with much more 
observations using PP, FS and their combinations, and collectively the 

obtained results would fully demonstrate the sensitivity/specificity of 
this powerful systemic molecular approach for analyzing nutrient-gene 
data.
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