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Abstract
Studies show that millions of people throughout the world lose their lives as the result of sudden cardiac death (SCD) each year. These deaths can be reduced by using 
medical equipment such as defibrillators.  However, there is still an urgent need for a suitable way to predict SCD so that the doctors can take proper decisions for 
patients at risk. In this paper, we investigated a way to predict sudden cardiac death. To do this, we first extract the HRV signal from ECG signal and elicit informative 
nonlinear and time-frequency features. Then, the dimension of feature space is reduced by applying feature selection and finally, healthy persons and those at risk of 
SCDs are classified using MLP and KNN neural networks. To evaluate the capabilities of analytical methods in classification, we have compared the classification 
rates by using both separate and combined nonlinear and TF features. The results show that there are features in the HRV signal of patients prone to SCD before the 
onset of SCD, which noticeably differ from those of normal people. Another remarkable result to emerge from our analysis is that the combination of time- frequency 
and nonlinear features have a better ability to detect this evident difference. The proposed method demonstrates that four minutes prior to the occurrence of SCD, the 
signals of a normal person and one of at risk can be differentiated in an effective and a reliable manner, which in turn, can make possible the provision of timely treatments.
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Introduction
Sudden Cardiac Death (SCD), resulted from a precipitous loss 

of heart function, is a leading cause of cardiovascular mortality in 
modern socialites. This is a very serious cardiac event that will claim 
the patient’s life within few minutes [1,2]. When this occurs, no blood 
can be pumped to the rest of the body within minutes in a person with 
known or unknown cardiac disease.

Despite the significant decline in coronary artery disease (CAD) 
mortality in the second half of the 20th century, sudden cardiac death 
(SCD) continues to claim 250 000 to 300 000 US lives annually. In North 
America and Europe the annual incidence of SCD ranges between 50 to 
100 per 100000 in the general population. Due to the lack of emergency 
medical response systems in most world regions, worldwide estimates 
are currently not available. However, even in the presence of advanced 
first responder systems for resuscitation of out-of-hospital cardiac 
arrest, the overall survival rate in a recent North American analysis was 
4.6% [3]. Astonishingly, the victim may not even have been diagnosed 
with heart disease. Also, the time and mode of death is quite unexpected 
[4]. Most victims (>90%) have previously known or unrecognized 
cardiac abnormality [5-9]. These life-threatening arrhythmias that 
indicate SCD are most often initiated with a sustained ventricular 
tachyarrhythmia, including ventricular tachycardia (VT), ventricular 
flutter (VFL), or ventricular fibrillation (VFib). A smaller percentage 
of SCD events are related to a primary brady arrhythmia [10].  SCD 
may abruptly strike any person, young or elderly, if they are at high 
risk of heart disease. Besides utilizing public access defibrillation (PAD) 
procedure to recue impending death patient after the collapse, a more 
reliable solution is to prevent onset SCD by adopting medical aid prior 
to the occurrence of SCD. Thus, it should be made possible to make an 
early warning around half an hour before the crisis presents itself. [11].

Ichimaru et al. found that the respiratory peak of the heart rate 
variability (HRV) in SCD patient disappeared during the night time 
one week before death [12]. Van Hoogenhuyze, D., Martin, et al. 
observed two HRV measurements, standard deviation of mean of sinus 
R-R intervals (SDANN) and mean of SD (SD), from 24 hrs HRV. They 
have evidence to show that HRV is low in patients who experience 
SCD and is high in young healthy subjects [13]. In our early and 
encouraging experiments, we showed that the TF method can classify 
normal and SCD subjects, more efficiently than the classical method 
[14]. Moreover, we evaluated both TF and Classic methods through the 
MLP classifier for one-minute ECG signal before SCD by the accuracy 
of 99.16% and 74.36%, respectively. However, the relationship between 
short-term HRV and SCD is unknown. In addition, repolarization 
alter nans phenomenon provides a safe, noninvasive maker for the 
risk of SCD, and has proven equally effective to an invasive and more 
expensive procedure - invasive electrophysiological study (EPS), which 
is commonly used by cardiac electrophysiologists [15,16].

Analysis of heart rate variability (HRV) has provided a noninvasive 
method for assessing cardiac autonomic control [17]. HRV is accepted 
like a strong and independent predictor of mortality after an acute 
myocardial infarction [18], such that a reduced HRV is associated with 
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a higher risk for severe ventricular arrhythmia and sudden cardiac 
death [19]. In this research, the heart rate variability (HRV) signal is 
used to study sudden cardiac death (SCD). The common linear features 
and time-frequency (TF) domain features have been used to predict the 
sudden cardiac death. It should be noted that different linear methods 
have so far been applied for analysis of HRV signal. Nevertheless, studies 
in the literature suggest that classic linear methods fail to predict SCD 
effectively and reliably [14,10]. Recently, it has been brought to attention 
that the non-linear processing methods can provide more information 
than linear methods and can be a good complement for them [20]. In 
this article, we aim to conduct classic linear, time-frequency and non-
linear analysis on HRV signal of healthy persons and patients prone 
to SCD. Therefore, we use combinational feature vector and neural 
classifiers to separate healthy subjects and those at risk. Having extracted 
HRV signal from ECG signal, we elicited linear features and applied 
the Wigner Ville transform to obtain time-frequency features. Finally, 
nonlinear features are extracted. Subsequently, feature dimensionality 
is reduced through employing combinational feature vector and feature 
selection methods. In the next stage, Multilayer perceptron (MLP) 
neural network and K-Nearest Neighbor (KNN) neural network are 
used to classify healthy persons and those susceptible to SCD. This 
classification is performed in 4 steps. The separability of each one-
minute interval (i.e., the first one minute, the second one minute, the 
third one minute and the forth one minute before SCD) in prediction of 
SCD is evaluated through calculating the accuracy. Figure 1 illustrates 
the block diagram of the proposed method.

Material and methods
The proposed method is evaluated on a database containing 35 

patients with sudden cardiac death (including 16 females and 19 males, 
with a sampling rate of 256 Hz, aged 18 to 89, 12 observations have 
been obtained from other channels) and 35 normal people (including 5 
males, aged 26 to 45, and 13 females, aged 20 to 50, with a sampling rate 
of 128 Hz, 17 observations have been obtained from other channels). 
This open access database is prepared by MIT-BIH database with the 
title of Sudden Cardiac Death Holter database & Normal Sinus Rhythm 
database.

In cases that for each observation (patient), two channels were 
available, each channel is used as a separate observation (patient).

Preprocessing of ECG signal 

The dataset consists of 24-hour ECG recordings (Holter) before the 
event of heart death and several seconds after that. Patients who show 
signs of a previous heart attack or having the hard tachyarrhythmia 
are susceptible to SCD, and finally they succumb to SCD.  One-minute 
time series segments prior to the onset of SCD are separated and named 
as the first minute, second minute, third minutes and fourth minutes, 
respectively. Figure 2 shows an electrocardiogram signal of a 34-year-
old patient that has led to sudden cardiac death. Before the occurrence 
of SCD, there is no difference between the ECG signal of person 
susceptible to heart death and that of a normal person. Figure 3 depicts 
a sample of ECG signal of a person with SCD several seconds before the 
onset of SCD and a few seconds after.

One minute before the occurrence of the sudden cardiac death 
was selected as ECG recordings for patients. For normal subjects one 
minute of the ECG signal was selected at random. Then, the Pan-
Tompkins [21] algorithm was used to detect the QRS-complexes in 
the ECG-signal from which we could determine the RR-intervals and 
HRV signal. Thus, the preprocessed HRV signal is now ready to extract 

features from it. In the Figure 4 & Figure 5 show HRV and ECG signals 
of a healthy person and those of an SCD subject.

Classical feature analysis
In this step, a number of common linear features are extracted. They 

include 5 features in the time domain and 4 features in the frequency 
domain.

Time-domain features

Statistical time-domain measures were divided into two classes:

•	 Direct measurements of NN intervals

•	 Measurements from the differences between NN intervals

Direct measurements of NN intervals: These features include two 
simple time domain variables that can be calculated by:

1. Mean of all NN intervals (MNN).

1 ( )mRR RR i
N

= ∑
 

1)

Figure 1. Flowchart of proposed algorithm
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Figure 2. The ECG signal of SCD patient, from 2 minute before SCD event and several seconds after that

Figure 3. ECG signal of person on the moment of hearth death
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Figure 4. a) One minute of the ECG signal of a healthy person  b) The  HRV signal which was extracted from figure a

Figure 5. a) One minute the ECG signal of a patient just  before occurrence of SCD. b) The HRV signal which was extracted from part a
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2. Standard deviation of all NN intervals (SDNN).

21 ( ( ) )mSDNN RR i RR
N

= −∑  			                    (2) 

which reflects all the cyclic components responsible for variability 
in the period of recording

Measurements from the differences between NN intervals: The 
most commonly used measures derived from interval differences 
include:

1. The square root of the mean of the sum of the squares of 
differences between adjacent NN

Intervals ( RMSSD).

21 ( ( 1) ( ))RMSSD RR i RR i
N

= + −∑   		                      (3) 

2. The standard deviation of differences between adjacent NN 
intervals (SDSD).

2
( )1

1 ( ( ))n
dif difi

SDSD RR RR
N =

= ∑ 			                   (4) 

 ( ) ( ( 1) ( ))diffRR RR i RR i= + − 		                     (5) 

( )
1 ( ( 1) ( ))difRR RR i RR i
N

= + −∑  		                     (6) 

3. The proportion derived by dividing the number of interval 
differences of NN intervals greater than 50 ms by the total number of 
NN intervals (PNN50) [22].

( )
[( ( 1) ( ) 50 )]

[ ( ) ]
RR i RR i ms

total RR dif
+ − >  			                    (7)

Frequency domain features

Although the time domain parameters are computationally 
effective, they lack the ability to discriminate between the sympathetic 
and parasympathetic contents of the RR intervals. It is generally accepted 
that the spectral power in the high frequency (HF) band (0.15-0.4 Hz) 
of the RR intervals reflects the respiratory sinus arrhythmia (RSA) 
and thus cardiac vagal activity. On the other hand, the low frequency 
(LF) band (0.04-0.15 Hz), is related to the baroreceptor control and is 
mediated by both vagal and sympathetic systems [23]. In this work, the 
LF, HF,VLF and ratio of the LF and HF bands power (LF/HF) is used as 
the frequency domain features of the RR interval signal [24].

The power spectral density(PSD), shown in Figure 6, was computed 
using Burg parametric method.

Spatial scattering of two of these features is shown in Figure 7. As 
can be seen, these features are suitable for discriminating between the 
two groups, i.e. the healthy and SCD subjects.

Time-frequency (TF) domain analysis
An approach to analyzing non stationary HRV signal is applying 

time-frequency (TF) methods which can be divided into three main 
categories: nonparametric linear TF methods based on linear filtering, 
including the short-time Fourier transform [25,26] and the wavelet 
transform [27,28], nonparametric quadratic TF representations, 

including the Wigner- Ville distribution and its filtered versions [29-
32], and parametric time-varying methods based on autoregressive 
models with time-varying coefficients [33,34]. In this paper the 
Smoothed Pseudo Wigner-Ville distribution (SPWVD) is preferred 
since it provides better time frequency resolution than nonparametric 
linear methods, an independent control of time and frequency filtering, 
and power estimates with lower variance than parametric methods 
when rapid changes occur [30]. The main drawback of the SPWVD is 
the presence of cross-terms, which should be suppressed by the time 
and frequency filtering. The SPWVD of the discrete signal x(n) is 
defined by [31].

( )
2N-1 M-1 j2 km/N

k=-N+1 p=-M+1
, 2 h(k) (p) ( p,k)xX n m g r n e π−= +∑ ∑  

(8)

where n and m are the discrete time and frequency indexes, respectively, 
h(k) is the frequency smoothing symmetric normed window of length 
2N−1 , g(p) is the time smoothing symmetric normed window of length 
2M − 1 and rx(n, k) is the instantaneous autocorrelation function, 
defined as

( ) ( ) ( )*, .
x

r n k x n k x n k= + −  		                    (9)

Figure 8 shows the result of applying Wigner Ville transform to the 
HRV signal.

Figure 6. PSD of HRV signal, power in each frequency band was indicated

Figure 7. Spatial distribution of mean (in horizontal axis)  and std (in vertical axis)



Ebrahimzadeh E (2018) Linear and nonlinear analyses for detection of sudden cardiac death (SCD) using ECG and HRV signals

 Volume 1(1): 1-2Trends in Res, 2018                   doi: 10.15761/TR.1000105

Figure 8. Wigner Ville transform of the  HRV signal  of a SCD person

TF features extraction

Each HRV signal is divided into 5 segments of equal length, each 
segment is approximately 15 seconds in time domain. The average 
energy of each segment was computed. The features are: 

MAX w: maximum amount of energy in each window.

MIN w: minimum amount of energy in each window.

DIF w: difference between maximum and minimum amount of 
energy between windows.

STD w: standard deviation between energy of time windows.

The obtained signal in TF domain is also divided into three frequency 
segments. 

Evlf : the complex of energy signal in very low frequency band(0.003-
0.04) Hz, divided by length of band(0.037)

Elf : the complex of energy signal in low frequency band(0.04-0.15) 
Hz, divided by length of band(0.11)

Ehf : the complex of energy signal on high frequency band(0.15-0.4) 
Hz, divided by length of band(0.25).

Fvlf : the average of energy signal in very low frequency band (0.04-
0.003)Hz.

Flf : the average of energy signal in low frequency band(0.04-0.15)Hz.

 Fhf : the average of energy signal in high frequency band(0.15-0.4)Hz.

Also, we have defined the first order derivative as a feature to 
show the difference between adjacent windows. This derivative is 
the difference between the average energy in subsequent windows. 
This derivative for the first window (first 15 S) was computed by the 
difference between this window and the last 15 seconds in the second 
minute. So the first order derivative feature is computed as below

1dif n nW W W −= −  (10)

The result of features survey in time span of 15 seconds illustrates 
that in an SCD person, the features changes from one window to next 
window is much more prominent so we define the first order derivative.

Nonlinear analysis

Without a doubt, the cardiovascular system is more complex than 
linear systems and also has non-stationary behaviors. There are two 
non-linear analyses that illustrate chaotic dynamical characteristics in 
HRV signal and are used for classifying healthy persons and patients 

prone to SCD. Two different nonlinear parameters of the RR intervals 
are used in this work, which are described as below.

Poincare plot

When in the RR intervals, each interval RR (n +1) is plotted as a 
function of previous interval RR(n) , the resulting plot is known as 
the Poincaré plot, which is a relatively new tool for RR interval signal 
analysis. Poincaré plot can be seen as a graphical representation of 
the correlation between the successive RR intervals. This plot can be 
quantitatively analyzed by calculating the standard deviations of the 
distances of the points RR(i) from the lines y = x and y = -x +2RRm, 
where RRm is the mean of all RR(i) values. These standard deviations 
are denoted by SD1 and SD2, respectively. In fact, SD 1represents the 
fast beat-to-beat variability, while SD2 describes the relatively long-
term variability in the HRV signal [35]. The length (SD2) and the width 
(SD1) of the long and short axes of Poincaré plot images represent short 
and long-term variability of any nonlinear dynamic system [36]. We 
developed mathematical formulations that relate each measure derived 
from Poincaré plot geometry to well understood existing heart rate 
variability indexes (Figures 9 and 10)[36]. A strong correlation was 
found when comparing high frequency power of heart rate signals 
(modulated by parasympathetic nervous system) to SD1 [37]. SD2 was 
found to be well correlated with both low and high frequency power 
(modulated by both the parasympathetic and sympathetic nervous 
system) [37]. The ratio SD1/ SD2 is usually used to describe the relation 
between the two components [22,38,39].

Analysis method DFA 

Detrended fluctuation analysis (DFA) is a method for quantifying 
long-range correlations embedded in a seemingly non-stationary time 
series, and also avoids the spurious detection of apparent long-range 
correlations that are an artifact of non-stationarity. This method is a 
modified root mean square analysis of a random walk [22,40-45].

Figure 9. Encoding HRV data using Poincaré plot

Figure 10. a) the Poincare plot of an SCD subject and b) Poincare plot of a normal subject
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Neural network classifier

To discriminate between ECG of normal person and a person who 
is prone to sudden cardiac death, The Multilayer perceptron (MLP) 
neural network and K-Nearest Neighbor (KNN) neural network 
classifier have been used. Features extracted from HRVs of one-minute 
intervals (i.e., the first one minute, the second one minute, the third 
one minute and the fourth one minute before SCD) were compared to 
normal HRVs of one minute. 

Multilayer perceptron

MLP network formed in three layers using error back propagation 
algorithm with variable learning rate [46-52]. By changing the number 
of hidden layer neurons, we have tried to optimize the neural network 
architecture. The best selection was a three-layer neural network 
consisting of an input layer, a hidden layer and an output layer. The input 
layer has a number of nodes equal to the input vector length (7 node). 
The output layer consists of one node, accounting for a possibility of 
only 2 classes to be classified. Also, the number of nodes in the hidden 
layer is 5. Both input and output nodes use linear transfer functions, 
and the hidden layer uses a sigmoid function.

k-Nearest neighbor 

k-Nearest neighbor (k-NN) algorithm is one of the most effective 
non-parametric methods in pattern recognition [53]. The k-NN 
algorithm is a method for classifying objects based on their distance 
to the training examples in the feature space. The k-NN algorithm is 
among the simplest of all machine learning algorithms. The algorithm 
is independent from statistical distribution of training examples. There 
are several distance measures that might be used in this algorithm. 
However Euclidean distance is commonly preferred as the distance 
measure. An object is classified by the majority vote of its neighbors, 
and the object is assigned to the class most common among its k nearest 
neighbors. The number k is usually chosen small. If k = 1, then the 
object is simply assigned to the class of its nearest neighbor. The selected 
feature set is then used to determine the best value of k for the classifier. 
Therefore, different numbers of nearest neighbors (k = 1, 3, 5, 7, 9, 11, 
13) are tested in the k-NN classifier to obtain the best performance 
for the classifier [54-57]. Performances of all classifiers are calculated 
based on their accuracy. the maximum performance is provided by a 
7-nearest neighbor classifier. Network training continued until the 
mean square error became less than 0.01 or the number of training 
iterations reached to 1000. Due to the limited input data set, Leave One 
Out cross-validation method was done for training [45]. At each stage 
one of observations was selected as test data and 69 as train data, and 
this process repeated 70 times. Another, words for each experiment 
use 69 examples for training and the remaining example for testing. 
Network error in each step was computed, and finally the average was 
calculated. One advantage of this approach is that all the input data set 
are present in both processes (train and test) As asynchronous and the 
network shows it is all capabilities. The same process was done for KNN 
classifier.

In this stage, firstly for evaluating the separability of features, the 
extracted features are compared with each other in both individual 
(linear, nonlinear and time-frequency) and optimal combinational 
modes. The separability of linear, non-linear and time-frequency 
features and also combinational mode is calculated three minutes 
(180s) and two minutes(120s) before SCD and is shown in Table 1.

Wang and et al [10] used 2-minute (just before SCD) of the same 
dataset to predict SCD. Table 2 shows the results of our method and 

Wang’s method. As it can be seen, the predictive accuracy has been 
improved from 67.44% to 91.23%.

As can be seen in Table 1, combinational features have more 
capability in classification of people (i.e., Normal and SCD). That is 
why combinational features have been used in this study as input 
feature vector to predict SCD. In this way, HRV signals (before SCD) 
have been partitioned into one minute intervals. Then, the separability 
of each one-minute interval (i.e., the first one minute, the second one 
minute, the third one minute and the forth one minute before SCD) in 
prediction of SCD is evaluated through the computing accuracy. The 
obtained results show that the combinational feature vector can predict 
SCD by the accuracy of 99.73%, 96.52%, 90.37% and 83.96 for the first, 
second, third and fourth one minute intervals, respectively. The results 
also denote that the two minutes’ interval before SCD contains more 
information related to the SCD which can be used for prediction. In 
other words, the first one-minute interval before SCD contains more 
valuable information for prediction of SCD in comparison with other 
intervals (i.e., the second, third and fourth intervals), which is expectable 
from the medical perspective. Also, the ability of combinational feature 
vector in predicting of SCD is evaluated through the KNN classifier by 
the accuracy of 81.49%, 88.93%, 95.04%, and 98.32%. Table 3 shows the 
percentage of separating 4 minutes before the onset.

As it is seen, although there is not a significant difference between 
ECG of a normal person and that of a patient prone to SCD, by using 
the proposed combinational feature vector, symptoms of SCD can be 
observed even 4 minutes before SCD. In other words, in spite of that 
cardiology & electrocardiography experts cannot distinguish between 
normal ECG and patients who are prone to SCD, the proposed extracted 
features can be used to predict SCD. It is highlighted that those intervals 
which are closer to SCD have more capability for prediction of SCD. 

Result
Experimental results show there are significant information in HRV 

signal which can be extracted through the proposed method and be used 
for prediction of SCD although there is no difference between normal 
ECG and those ones which prone to SCD. This study has proposed 

Average Classification Rate
Two-Minutes (120 S before 

SCD)
Three-Minutes (180 S before 

SCD)
Features MLP KNN MLP KNN
Linear 71.08% 69.57% 68.82% 68.13%

Time-Frequency 80.16% 77.13% 76.41% 74.96%
Non- Linear 85.38% 84.33% 82.17% 83.58%

Combinational 98.74% 96.42% 95.78% 93.63%

Table 1. Average of separating percentage between healthy persons and patients prone to 
SCD 4 minutes before the onset of SCD using combinational vector motion method

Comparison Methods
Ref [10] Our Methods

MLP 67.44% 98.74%

Table 2. Predictive accuracy for the proposed method and Wang's method [10] (2-minute 
analysis)

Average classification rate with composition feature vector

Classifier Forth one 
minute Third one minute Second one 

minute First one minute

MLP 83.96% 90.37% 96.52% 99.73%
KNN 81.49% 88.93% 95.04% 98.32%

Table 3. Average of separating percent between healthy person and patients prone to SCD, 
4minute before incident by means of composition vector motion method
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a new combinational feature vector which contains more valuable 
information for prediction of SCD in comparison with previous works. 
The results of this research illustrates that in the electrocardiogram 
signal of a SCD patient, there are features that are majorly different 
from healthy person’s features. These differences could not be detected 
by classic methods, in contrast, the time-frequency (TF) methods are 
shown to be effective in serving the purpose.

Simply put, we have shown that the 2 minutes interval before 
SCD can be used to distinguish between a person who is prone to 
SCD and a normal ECG. Also, the third minute interval before SCD 
carries information presenting high risk of SCD that can be estimated 
through the proposed method. Moreover, by closing to the SCD, the 
risk of SCD increases which is expectable from the medical perspective. 
In the fourth one minute before the onset of SCD, the risk of SCD 
exists although it has been decreased in comparison with the previous 
intervals which are closer to the SCD. Generally, healthy and unhealthy 
persons can be classified by detecting heart attack and tachyarrhythmia 
before SCD, because patients who show signs of a previous heart 
attack or having the hard tachyarrhythmia are susceptible to SCD, and 
may finally succumb to SCD. In this study, we have introduced a new 
approach which uses a combinational feature vector to predict SCD. It 
is noticeable that, when approaching the onset of SCD from the fourth 
interval, the percentage of correct detection of SCD rises dramatically 
and then climbs sharply for the closest interval to the SCD. Moreover, it 
is demonstrated that MLP classifier has better performance in detection 
of SCD than KNN classifier. Finally, our findings about detection of 
SCD can warn doctors of an imminent SCD 4 minutes before the event, 
helping them provide timely treatments that save the patient’s life.
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