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Abstract
Enzymes requiring adenosylcobalamin (AdoCbll) or complexes of [4Fe–4S]1+-S-adenosylmethionine (AdoMet) function with the intermediate formation of the 
5’-deoxyadenosyl radical and catalyze reactions involving carbon-centered radical intermediates. The latter form the radical SAM superfamily and are far more 
numerous and catalyze much more chemically diverse reactions than the AdoCbl-enzymes. The radical SAM superfamily likely preceded the AdoCbl-enzymes in 
evolution.
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Adenosylcob(III)alamin—a Vitamin B12 coenzyme

As a graduate student under R. H. Abeles In 1964-1968, the 
author investigated the adenosylcob(III)alamin-dependent reaction of 
dioldehydrase (DDH), a bacterial enzyme catalyzing the dehydration of 
propane-1,2-diol to propionaldehyde according to equation 1. 

The reaction proceeded with internal transfer of a hydrogen from 
C1 to C2 and transfer of C2(OH) to C1 [1]. The mechanistic role of 
adenosylcob(III)alamin (AdoCbl), a Vitamin B12 coenzyme, was of 
interest. AdoCbl had been found to include a covalent bond between 
Co(III) of the vitamin and C5’ of the adenosyl group [2]. The cobalt—
carbon bond was found to be weak and subject to homolytic scission, as 
illustrated in Figure 1, where 5’-dAdo• is the 5’-deoxyadenosyl radical.

The substrate analogue glycolaldehyde had been shown to inactivate 
dioldehydrase in the presence of AdoCbl, with irreversible cleavage of 

the C—Co(III) bond to form cob(II)alamin [3]. The author undertook 
to determine the fate of the 5’-adenosyl group and proved it to be 
5’-deoxyadenosine [3], so that the inactivation could be described as 
in equation 2 [4]. Inactivation of DDH by glycolaldehyde proved to be 
the first mechanism of suicide inactivation of an enzyme by a substrate 
analogue to be described in chemical terms.

The author further showed that inactivation of DDH by [2-3H]
glycolaldehyde led to [3H]5’-deoxyadenosine, suggesting that the 
5’-deoxyadenosyl group in AdoCbl might participate in hydrogen 
transfer; and he proved this in the catalytic reaction by showing that 
the reaction of [1-3H]propane-1,2-diol as a substrate produced [5’-3H]
AdoCbl at the active site of DDH [5,6]. Reaction of [5’-[3H]AdoCbl 
with DDH and propane-1,2-diol produced [3H]propionaldehyde.

The foregoing observations led to a reaction mechanism initiated by 
the 5’-deoxyadenosyl radical and proceeding at the active site of DDH 
through a sequence of carbon-centered radicals, as depicted in Figure 2.

In addition to DDH, reactions of other AdoCbl-dependent 
isomerases, including glutamate mutase, methylmalonyl-CoA 
mutase, glycerol dehydratase, lysine 5,6-aminomutase, and ornithine 
4,5-aminomutase, follow the pattern of equation 3, β-interchange of 
hydrogen and another group between adjacent carbon atoms (equation 
3). As subsequently shown, adenosyl-C5’ of AdoCbl mediates hydrogen 
transfer in each reaction [7].

 
Figure 1. Homolytic cleavage of the Co-C5’ bond in adenosylcobalamin to 5’-dAdo . radical
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An exception is the AdoCbl -dependent ribonucleotide reductase 
[8,9], in which C5’ of AdoCbl initiates chemistry by hydrogen 
abstraction from Cys408 [10]. Thus, hydrogen transfer is proven for 
chemical reactions of all AdoCbl -dependent enzymes. Substrate-radical 
species, as detected in the reaction of DDH [11], are intermediates in all 
of these reactions [7].

S-Adenosylmethionine and radical enzymology

Prior to the 1980s, AdoMet was known as the biological methylating 
agent, for its role in donating the methyl group to numerous substrates 
engaged in essential biological functions. These reactions proceeded 
with methyl transfer by AdoMet in a polar displacement mechanism 
to nucleophilic nitrogen or oxygen atoms in the substrates to form the 
methylated products and S -adenosylhomocysteine.

An exception to methyl transfer in the activation of pyruvate 
formate lyase (PFL) proved to be essential [12], in which AdoMet was 
cleaved by the PFL activase to 5’-deoxyadenosine [13], concomitant 
\with the production of a radical form of PFL, identified as a glycyl 
radical [14].

The author and his associates discovered the mechanistic role of 
AdoMet in the reaction of lysine 2,3-aminomutase (LAM), which had 
been discovered by H. A. Barker and his associates in 1970 and remained 
obscure in the literature until 1987 [15]. The enzyme catalyzed the 
interconversion of L-a-lysine and L-b-lysine according to the pattern of 
AdoCbl-dependent reactions (equation 3) but did not require a Vitamin 
B12 coenzyme. LAM required AdoMet and pyridoxal-5’-phosphate, and 
the activity was increased by the presence of added iron and a reducing 
agent. To determine whether the 5’-adenosyl group of AdoMet mediated 
hydrogen transfer, as in AdoCbl, the action of LAM on L-lysine was 
examined upon activation with S-[5’-3H]adenosylmethionine [16]. This 
reaction produced the equilibrium mixture of L-a-[3H]lysine and L-b-
[3H]-lysine, proving hydrogen transfer by the 5’-deoxyadenosyl group 
of AdoMet. Deuterium transfer experiments proved that hydrogen 
transfer took place both inter-and intramolecularly [17], as required if 
5’-deoxyadenosine is an intermediate in hydrogen transfer.

The author and his associates proposed that LAM somehow 
produced the 5’-deoxyadenosyl radical from AdoMet, and that this 
radical initiated the chemical mechanism in Figure 3. Of the four 
carbon-centered radicals in Figure 3, three have been observed and 
characterized spectroscopically and shown to be kinetically competent 
intermediates [18-20]. Radical 3 was the dominant radical in the steady 
state in the reaction of L-lysine [18]. 4-Thia-L-lysine proved to be a 
substrate, and the 4-thia-analog of radical 1 proved to be the dominant 
radical in the steady state [19]. An analogue of AdoMet, S-[3’,4’-
anhydro]adenosylmethionine, proved to be fully functional, and the 
allylic analogue of 5’-dAdo • , 3’,4’-anhydro-5’-Ado •, was the dominant 
radical in the steady state [20].

To address the question of how the 5’-deoxyadenosyl radical (5’-
Ado • in Figure 3) could arise from AdoMet, the author and associates 
investigated the role of iron in the action of LAM. They found that LAM, 
purified under strictly anaerobic conditions, contained a [4Fe–4S]1+ 
cluster that was required for activity [21,22]. Oxidation of the cluster 
to [3Fe–4S]2+ eliminated activity. Apparent cleavage of the strong S-C5’ 
bond in AdoMet (>60 kcal mol-1) required electron transfer, presumably 
from the [4Fe–4S]1+ cluster. Like the pyruvate formate lyase (PFL) 
activating enzyme [23], AdoMet was found to be ligated directly to Fe 
in the [4Fe4S] cluster, as illustrated in Figure 4 [24]. Intimate binding 
between the cluster and AdoMet facilitated electron transfer from 
{Fe–4S]1+ to AdoMet and cleavage to the 5’-deoxyadenosyl radical, as 
shown in Figure 4. This cleavage of AdoMet to the 5’-deoxyadenosyl 
radical consolidated the parallel between the functions of AdoCbl and 
AdoMet.

Figure 2. The chemical roles of the 5’-deoxyadenosyl radical and other carbon-centered 
radicals at the active site of dioldehydraste (DDH)

Figure 3. The carbon-centered radical mechanism in the interconversion of lysine and 
β-lysine by lysine 2,3-aminomutase

Figure 4. Homolytic cleavage of the S-C5’ bond in adenosylmethionine to 5’-dAdo . radical
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In the 1990s several other enzymes not engaged in methyl transfer 
became known to require AdoMet and iron-sulfur clusters. These 
included anaerobic ribonucleotide reductase, biotin synthase and lipoyl 
synthase [25-33]. The latter two catalyzed the insertion of sulfur into 
unreactive C—H bonds of precursors. The ribonucleotide reductase in 
E. coli grown anaerobically and activated by AdoMet proved to contain 
a [4Fe–4S] cluster. And the PFL activating enzyme was found to contain 
iron-sulfur clusters, and when purified anaerobically to contain a [3Fe–
4S] cluster [34,35]. All of the reactions of these enzymes were found to 
proceed by radical mechanisms.

The radical SAM superfamily

In due course the nucleotide sequences of genes encoding the 
foregoing AdoMet /[4Fe–4S]-dependent enzymes became known. 
Heidi L. Sofia and her associates examined the translated amino acid 
sequences and discovered the motif CxxxCxxC in common among 
these enzymes. They searched the available genomic databases in 2001 
and found nearly 600 homologs, which they named the Radial SAM 
superfamily [36]. They found superfamily members throughout biology 
in both the animal and plant kingdoms. With the passage of time, the 
genomic database grew to include more than 100,000 homologous 
sequences in the Radical SAM superfamily encoding enzymes engaged 
in more than 70 amazingly diverse functions [37-39].

Members of the superfamily include enzymes that catalyze nucleic 
acid and protein modifications, enzymes that catalyze key steps in 
biosynthesis of vitamins, coenzymes, analogues of nucleotide bases, 
antibiotics and many other biological species. A number of Radical SAM 
enzymes require both AdoCbl and AdoMet and catalyze methylations 
of non-nucleophilic carbon and phosphorus atoms. Enzymes of the 
radical SAM superfamily might catalyze the most chemically diverse 
reactions of any superfamily in biochemistry.

Fewer than a third of all Radical SAM enzymes have been 
experimentally investigated in detail. Most of them appear to function 
by mechanisms involving carbon-centered radicals. However, in some 
of them, AdoMet displays bimodal functions, polar methylation in one 
step and aa a source of the 5’-deoxyadenosyl radical in another step 
[40,41]. It remains possible that one or another Radical SAM enzyme 
might engage only in polar methyl group transfer. Whether all Radical 
SAM enzymes catalyze carbon-centered radical chemistry remains to 
be determined in future research.

Origins

Cob(III)alamins are structurally complex, requiring many 
enzymatic steps to assemble. Adenosylcob(III)alamin synthetase 
produces AdoCbl in a single step from ATP and cob(I)alamin. 
Cobalamins are produced in bacteria as vitamin B12, and both bacteria 
and animals contain the synthetase. In contrast, de novo synthesis of 
the simpler methionine occurs only in plants, and it is a nutritionally 
essential amino acid for animals. iron-sulfrur clusters are among the 
most primitive cofactors. All things considered, the Radical SAM 
enzymes likely preceded AdoCbl enzymes in evolution.

The diverse radical SAM enzymes catalyze amino acid 
isomerizations; methylation of non-nucleophilic phosphorus [39] and 
carbon atoms [40,41]; modifications of proteins and nucleic acids, 
including deazaguanine biosynthesis [40]; glycyl radical formation; 
thiyl radical formation; chemically difficult steps in vitamin, cofactor, 
and antibiotic biosyntheses; and many other processes [37,38]. The less 
diverse AdoCbl proteins catalyze isomerizations and ribonucleotide 
reduction, and also servie as photosensors [43].

While a significant number of radical SAM enzymes have been 
found to function by way of the transient 5’-deoxyadenosyl radical, 
this is not a universal property of radical SAM enzymes. At least one 
member of the superfamily, the TsrM methylase, might not catalyze a 
radical reaction [44]. Another member of the superfamily catalyzes both 
radical and polar methylation [43]. Other members of the superfamily 
remain to be studied in detail.

LAM and its relative glutamate 2,3-aminomutase are as active or 
more active than AdoCbl dependent enzymes catalyzing analogous 
reactions. Therefore, the two coenzymatic systems should be equally 
efficient sources of the 5’-deoxyadenosyl radical. The sheer size of the 
radical SAM superfamily means that it is an evolutionary survivor, and 
AdoCbl enzymes are supplemental and mechanistically related sources 
of the 5’-deoxyadenosyl radical. In a possibly significant mechanistic 
advantage, AdoCbl produces the 5’-deoxyadenosyl radical without 
a requirement for a reducing agent. Radical SAM enzymes require a 
reducing system to generate the [4Fe–4S]1+ cluster in the cleavage of 
AdoMet (Figure 4).
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