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Abstract
The balance between effector and regulatory immune cells needs a very exquisite balance in the context of solid organ transplantation to avoid the rejection of the 
organ while maintaining the more immune competence as possible. In the last two decades the role of regulatory immune cells has been extensively studied, mainly 
with regulatory T cells (Tregs), and in the last years another subset of regulatory cells, named myeloid derived suppressor cells (MDSC), has gained importance. 
These cells have different mechanisms of action and some of them are differentially regulated in a number of immune-mediated processes. Thus, MDSC, which play 
important roles in tolerance of experimental models of solid organ transplantation, have been proposed as biomarkers of the degree of immunosuppression and risk 
of rejection. Besides, they are also thought as therapeutic approach for the establishment of tolerance in human transplantation.
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Introduction
Solid organ transplantation is a primary therapy in patients with 

end-stage disease. Throughout the years immunosuppressive protocols 
have clearly reduced the incidence of acute rejection, but current 
pharmacological protocols still result in undesirable side effects, such 
as infection and cancer among others, what results in a moderate 
long-term allograft survival [1,2]. As a consequence, the main goals 
in transplantation are to predict the risk of developing rejection and 
to find alternative tolerance approaches to allow immunosuppression 
withdrawal in order to minimize the adverse effects that have deleterious 
effects on long term graft survival. In this regard, myeloid cells, which 
are involved both in non-specific reactions and donor-specific adaptive 
responses during allograft rejection, play a main role starting and 
controlling immune responses. Under certain circumstances, they 
contribute to the inflammatory process, expanding disease pathology. 
However, myeloid cells with regulatory properties can protect the 
host from uncontrolled inflammation. These cells, known as myeloid 
regulatory cells (MRCs), have been described within all the major 
myeloid cell lineages. Among them, myeloid-derived suppressor cells 
(MDSCs) have been described as a heterogeneous group of myeloid 
cells known to accumulate under chronic pathological conditions [3]. 
As a reflection of their biology, these cells had been called ‘‘immature 
myeloid cells’’ or ‘‘myeloid suppressor cells’’ (MSC) but as neither 
term was considered as accurate, Gabrilovich DI, et al. [4] proposed 
the term ‘‘myeloid -derived suppressor cells’ considering this term 
closer to reflect their origin and function. The first observations of 
suppressive myeloid cells were described more than 20 years ago in 
patients with cancer [5-7]. However, their functional importance in the 
immune system has only recently been appreciated due to the evidence 
that has demonstrated their contribution to the negative regulation of 
immune responses in cancer and other clinical settings, such as organ 
transplantation, infection and autoimmune diseases [3,8-12]. Initially 
MDSC have been described as immature cells that expand in the bone 
marrow in response to chronic inflammatory signals but evidence 

support in certain circumstances MDSC may represent monocytes 
and neutrophils that have been activated into immunosuppressive 
populations [13].

In transplantation the MDSCs are able to suppress adaptive and 
innate immune responses and they have been suggested as potential 
biomarkers for allograft tolerance as they can play a main role in the 
balance between graft acceptance and rejection [14,15]. The MDSCs 
were first described in mice as CD11b+ Gr1+ cells and experimental 
transplant models demonstrated they have an important role in the 
induction of tolerance [15,16]. As most of the published studies were 
performed in animal models, there  is a paucity of data addressing 
MDSC features and their role in human transplantation. Human 
MDSCs in peripheral blood are classified in three main subsets: 
monocytic-MDSC (Mo-MDSCs: CD33+ CD11b+ CD14+ HLA-DR-/
low), polymorphonuclear-MDSC (PMN-MDSCs:CD11b+ CD14-

CD15+ HLA-DR- or CD11b+ CD14-+ CD66b+) [17] and a population 
lacking both differentiation surface markers classified as early- stage 
MDSC (e-MDSCs: CD33+ CD15- CD14-HLA-DR-) [17]. CD33 marker 
can be used instead of CD11b since very few CD15+ cells are CD11b-. 
While Mo-MDSC are CD33+, PMN-MDSC are CD33dim [18]. The 
features and clinical relevance of e-MDSC are not well stablished but 
limited suppression of T cell proliferation and cytokine expression 
was found by some authors [19]. Other suggested makers in human 
MDSCs include high levels of CD66b and low levels of CD62L and 
CD16, vascular endothelial growth factor receptor 1 (VEGFR1) (Flt-
1) [20] and expression of CD124 [21]. Initially the term ‘granulocytic 
MDSC’ was used to describe PMN-MDSC [22,23] but since PMN-
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MDSC are phenotypically distinct from steady-state neutrophils 
lately V. Bronte, et al. proposed the term PMN as more accurate to 
define this subset [17]. Because these markers are not exclusively 
expressed by MDSCs, these regulatory cell subsets are best defined by 
their capacity to suppress T cell proliferation [24], which is associated 
with their ability to induce T cell apoptosis [25] and expand Treg 
cells [26] (Figure 1). Moreover, the interaction between MDSC and 
other immune cells has been described in recent years [27–30]. It is 
important to remark that assays of human MDSC function are difficult 
to implement due to their technical complexity and high variability. At 
the present time, the technique allowing for separation of neutrophils 
from PMN-MDSC is Ficoll gradient regularly used for the isolation of 
mononuclear cells. Low- density fraction contains PMN-MDSC and 
activated neutrophils. Therefore, CD11b+CD14-CD15+/CD66+ cells in 
low-density fraction contain both PMN-MDSC and neutrophils [17]. 
Hence, there is a need for reliable surrogate markers of human MDSC 

function as gating criteria cannot discriminate monocytes from Mo-
MDSCs and neutrophils from PMN-MDSC since at present there are 
no combinations of markers exclusive to MDSC. Human MDSCs exert 
their T cell suppressive actions through a wide variety of mechanisms, 
including production of anti-inflammatory cytokines and up-
regulation of immune- regulatory molecules, including arginase 1 
(Arg1) and indoleamine 2,3-dioxygenase (IDO) [31,32] (Figure 1). 
Conventional phenotyping of human Mo-MDSC subsets mainly 
relies upon HLA-DR expression; however, it is unclear to what extent 
HLA-DR expression is influenced by standard immunosuppression, 
especially glucocorticoids. The release of neutrophils from the 
bone marrow in response to glucocorticoids is well established 
[33] and it has been reported that glucocorticoids can induce anti- 
inflammatory monocytes resembling MDSC [34,35]. In previous 
experiments from our group (data not published) we observed a 
dose-dependent reduction in HLA-DR expression levels in monocytes 
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Figure 1. Mechanisms of MDSC suppressive activity
MDSC exert their suppressive function through a variety of mechanisms: (1) secretion of anti- ‐inflammatory mediators, such as IL- ‐10 and TGF- ‐β that promote induction of T- ‐regulatory 
cells; (2) increased arginase and iNOS: the increased activity of arginase leads to enhanced L- ‐arginine catabolism. The lack of L- ‐arginine inhibits T- ‐cell proliferation through different 
mechanisms, including decreasing their CD3ζ expression; on the other hand iNOS generates NO which suppresses T- ‐cell function inhibiting,  MHC class II expression  and inducing T- ‐cell 
apoptosis; (3) increased production of ROS generates peroxynitrite which induces the nitration and nitrosylation of the amino acids and mediate MDSC suppression of T- ‐cell function; (4) 
MDSCs can inhibit NK cell function by interacting with the NKp30 receptor; (5) inducing increased PD- ‐1 expression; and (6) increased IDO activity which catabolizes tryptophan and 
limits T cell proliferation.
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after dexamethasone exposure, monocytes were phenotypically 
indistinguishable from Mo-MDSC. In the critical illness context, 
Le Tulzo, et al. studied 48 septic patients and found an association 
between high levels of circulating cortisol and reductions in monocyte 
HLA-DR expression on day 6 of illness [36]. The authors then 
demonstrated in vitro that dexamethasone caused a down-regulation 
of a key transcription factor for HLA-DR in normal monocytes. They 
suggest that glucocorticoid action may represent another mechanism 
for the development of innate immune dysfunction. Similarly, Volk, 
et al. demonstrated that the administration of methylprednisolone in 
the setting of cardiopulmonary bypass resulted in an exacerbation of 
innate immunosuppression over that obtained with bypass alone [37]. 
An important goal for future studies is to define cell-surface markers 
and gating strategies that uniquely identify the different populations of 
MDSC. On the other hand, a major challenge in immune monitoring of 
transplant recipients is distinguishing between changes in biomarkers 
reflective of underlying alloimmune responses versus changes related 
to immunosuppressive therapy.

Kidney Transplantation
In kidney transplant models Dugast, et al. reported the role of 

MDSC in kidney transplant recipient rats [38]. In this model, MDSC 
in the recipient allograft were described for the first time in organ 
transplantation and their suppressive mechanism of tolerance was in 
part mediated by iNOS. In concordance, the role of NO (nitric oxide) 
in MDSC mediated suppression was first described by Mazzoni [39]. 
Another report from Vanhove’s laboratory reported that secretion 
of CCL5 by MDSC was responsible for the accumulation of Treg 
into tolerized kidney allografts [40]. In subsequent studies the results 
indicate that a gradient of CCL5 might contribute to the intra graft 
localization of Treg in tolerant recipients controlled by MDSC [41]. 
In human kidney transplantation Luan, et al. found that the overall 
MDSC frequencies were elevated at 3, 6 and 12 months post-transplant 
[42]. Utrero-Rico, et al., observed Mo-MDSC cells counts rapidly 
increase after kidney transplantation and remain high one year 
after transplantation [43]. Hock et al. showed that renal transplant 
recipients (RTR) had elevated frequencies of circulating MDSC [8], 
but they further found MDSC numbers had returned to normal levels 
12 months post-transplantation [44]. However, in their previous study 
of RTRs with longer term transplants elevated MDSC numbers were 
detected in the majority of patients, suggesting that MDSC expand in 
the long-term, as the graft acceptance progresses. In a previous report 
from our group we evaluated the phenotype and function of different 
MDSCs subsets in 38 kidney transplant recipients (KTR) at different 
time-points and our data indicated that Mo-MDSC increase in KTR at 6 
months and 12 months post-transplantation [45]. Moreover, the MDSCs 
were shown to expand early after transplantation, independently of using 
basiliximab or thymoglobulin during induction [44] and almost tolerant 
kidney transplant recipients (ATKTRs) had significantly higher levels of 
monocytic MDSCs and CD4+CD25+FoxP3+ Tregs than short-term graft 
survival kidney transplant recipients and healthy donors [46].

These observational studies suggest that MDSC numbers increase 
rapidly after transplantation and peak following immunosuppressive 
therapy. Moreover, analysis of the changes in MDSCs obtained from 
donors, provided strong evidence that the changes occurring in RTRs 
were likely due to the immunosuppressive regimens rather than the acute 
inflammation from surgery itself [44]. Although Mo-MDSC phenotype 
seems to be influenced by standard immunosuppression, especially 
glucocorticoids, whether MDSC subsets are differentially regulated by 
local conditions or treatments require further investigations.

Studies developed in mice suggest that MDSCs have an important 
role to induce T regulatory cells (Treg) after transplantation [16,47], 
but their role in human transplantation is under investigation. In KTR, 
Luan, et al. observed that CD33+ CD11b+ HLA-DR− MDSC are capable 
of expanding Treg, and they correlate with Treg increases in vivo (42). 
Consistent with this view, Meng, et al. [48] found that MDSCs isolated  
from transplant recipients were also able to expand regulatory T cells 
and were associated with longer allograft survival, and we also reported 
an increase in Treg expansion after Mo-MDSC coculture [45]. Further, 
the Mo-MDSC levels correlated positively with the survival rates, 
estimated glomerular filtration rates (eGFRs) of grafts, and the levels of 
CD4+CD25+FoxP3+ Treg in ATKTRs [46]. In two cohorts of patients 
with acute rejection the mRNA levels of S100A8 and S100A9 in biopsies 
predicted improved graft outcome. Expression of both proteins 
correlated with MDSC markers in PBMC and renal biopsies and higher 
expression of immune regulatory molecules [49]. Due to the lack of 
unique phenotypic markers functional studies have to be performed 
to identify MDSC subsets [24]. Murphy, et al. evaluated the capacity 
of blood derived CD11b+CD33+HLADR− MDSC from human KTRs 
to suppress CD4+T cells proliferation in vitro [42] demonstrating that 
CD11b+CD33+HLA-DR− myeloid cells from human KTR inhibit T cell 
proliferation, but no inhibition was found when CD11b+CD33+HLA-
DR− cells were obtained from healthy donors [42]. Moreover, we 
observed that Mo-MDSC from KTR under tacrolimus treatment had 
increased suppressive activity compared to rapamycin [45] and we 
attribute loss of suppressive function to diminished IDO expression 
in rapamycin-exposed Mo-MDSC. However, another study addressing 
the murine MDSC response to acute kidney injury demonstrated that 
MDSC reduced the injury, and the effect was potentiated by MDSC 
induction and enhancement of the immunosuppressive activity 
promoted by mTOR [50]. More recently, a previously unrecognized 
mechanistic pathway associated with organ rejection identifies the 
expression of mTOR by graft infiltrating macrophages at the center of 
epigenetic and metabolic changes that correlate with graft loss [51]. This 
novel functional mechanism has been termed “trained immunity” [52]. 
Therefore, it seems that, while mTOR inhibition may prevent trained 
immunity and inflammatory pathways in myeloid cells [53,54], it may 
also interfere with tolerogenic programming and the ability of myeloid 
cells to expand Treg and suppress T-cellmediated immune responses. 
This dual effect of mTOR inhibition in vivo is likely to determine the 
outcome of the transplanted organ.

Liver Transplantation
In the 1990s, Settmacher, et al. described an association between 

aggressive calcineurin inhibition and a reduction HLA-DR expression 
in monocytes in the setting of induction therapy in adults following 
liver transplantation [55]: among 91 patients, those whose monocyte 
HLA-DR expression dropped below 30% experienced increased rates 
of bacteremia, viremia, and fungemia compared to those whose HLA-
DR levels remained > 30%. In the same manner, Haveman JW, et al. 
monitored 20 liver transplantation recipients during the first month 
after transplantation and measured the expression of HLA-DR in 
monocytes. Seven out of 20 patients developed sepsis after a median of 
15 days post-transplantation and HLA-DR expression was significantly 
lower in these patients. The expression of HLA-DR in monocytes 
remained low before onset of sepsis. On day 7 after transplantation, HLA-
DR expression on 50% or less of monocytes had a positive predictive 
value for sepsis of 71%, whereas the negative predictive value was 85%. 
Furthermore, patients who received significantly more prednisolone 



Escudero MI (2021) Human Myeloid- Derived Suppressor Cells in Solid Organ Transplantation

 Volume 14: 4-7Trends in Transplant, 2021         doi: 10.15761/TiT.1000291

developed sepsis. The authors conclude that low HLA-DR expression 
on monocytes is a marker for a high risk of subsequent sepsis in liver 
transplantation patients and this high risk may be related to the dose 
of prednisolone [56]. It is known that under inflammation and fibrosis, 
MDSC are induced in the liver due to the local conditions [57]. MDSC 
are recruited in the liver and they differenciate by mechanisms that 
depend on contact between several cell types and on soluble mediators. 
For example, hepatic stellate cells promote MDSCs in mice and 
humans and mesenchymal stromal cells in human [58]. Bernsmeier, 
et al. reported that immunosuppressive CD14+HLA-DR- Mo-MDSCs, 
are expanded in patients with acute-on- chronic liver failure (ACLF) 
and TLR-3 agonists reversed Mo-MDSC expansion [59]. In a murine 
model, rapamycin induced the recruitment of MDSC and protected 
against immunological hepatic injury. Downregulating the mTOR 
activity in MDSCs induced iNOS and NO, and the pharmacological 
inhibition of iNOS completely eliminated the recruitment of MDSCs 
[60]. In another model of allogeneic liver transplantation, the authors 
observed an increase of regulatory T cell phenotypes and accumulation 
of MDSC in spleen [61].

Lung Transplantation
Hoffman, et al. monitored HLA-DR expression weekly after 

transplantation in 13 pediatric lung transplant recipients (LRT) [62]. 
Six out of seven patients who developed post-transplant pneumonia 
demonstrated lack of monocyte HLA-DR expression within the first 
two weeks of monitoring and those who developed pneumonia had 
lower monocyte HLA-DR expression over the four-week study period 
than those who remained infection-free. The authors propose that 
monitoring HLA-DR expression in monocytes may be useful to identify 
risk of infection and stratifying patients into higher and lower risk 
groups. Alingrin, et al. assessed the influence of early post-operative 
sepsis on T cell and monocyte reconstitution in anti- thymocyte 
globulin (ATG)-treated lung transplant recipients. Peripheral 
blood T-lymphocytes counts and monocyte HLA-DR (mHLA-DR) 
expression within 60 days post-transplant were analyzed. The authors 
found that sepsis is negatively correlated with the HLA-DR expression 
in monocytes [63]. These findings taken together highlight the 
importance of immunomonitoring after lung transplantation. Deshane, 
et al. found high numbers of CD11b+ CD14+ CD16− HLA-DR− NO-
producing myeloid derived regulatory cells, in the airways of patients 
with asthma but not in patients with chronic obstructive pulmonary 
disease (COPD) or in healthy control subjects [64]. On the other hand 
Scrimini, et al. observed elevated levels of circulating-lineage HLA-DR− 
CD33+ CD11b+ MDSCs in patients with COPD [65]. Other researchers 
demonstrated that CCR2+ Mo-MDSCs inhibit collagen degradation 
and promote lung fibrosis by producing transforming growth factor-β1 
(TGF-β1) [66]. The number of circulating activated MDSCs was found 
to be significantly increased in patients with pulmonary hypertension 
(PH) compared to control subjects, and was correlated with an increase 
in mean pulmonary artery pressure [67]. Sharma, et al. described 
the association of distinct MDSC sub-populations with the lung 
microbiome in LTRs. Their results suggested a functional link between 
the local microbiome and MDSC phenotype, which may play a role in 
the pathogenesis of BOS [68].

One from our group (unpublished) analyzed MDSC frequencies 
in 82 LTR were analyzed during the first  year after transplantation. 
Percentages of total MDSC were increased in LTR 3 months 
after transplantation up to a year. When we studied the effect 
of transplantation on MDSC subsets in our cohort, Mo-MDSC 
percentages increased promptly after transplantation and decreased 

gradually during follow up. On the contrary, PMN-MDSC percentages 
decreased in the short term after transplantation, and increased during 
follow up although no changes compared to pre-transplant levels were 
observed. Compared to pre-transplant levels, e-MDSC percentages 
were significantly increased at 7 days, 21days and 360 days. We 
obtained similar results when we calculated MDSC absolute numbers. 
In previous experiments we observed a dose-dependent reduction 
in HLA-DR expression levels in monocytes after dexamethasone 
exposition, then monocytes were phenotypically indistinguishable 
from Mo-MDSC. On concordance with these results, some studies 
previously published [33,37,56] point corticosteroids are modulating 
MDSC levels then we hypothesize that corticosteroids are increasing 
Mo-MDSC populations in peripheral blood immediately after 
transplantation. We observed (unpublished data) the suppressive 
capacity of MDSC from Tacrolimus treated LTR is increased compared 
to the suppressive results when CD14+CD11b+CD33+HLA-DR- cells 
were obtained from healthy donors. Heigl, et al. characterized MDSCs 
in lung transplant recipients to assess if MDSCs can serve as a potential 
new research target in the field [69]. They observed that G-MDSCs 
obtained from LTR were functionally suppressive and showed a modest 
correlation with increasing CNI trough levels, a previously reported 
phenomenon [70,71]. Previous studies demonstrated that expression 
of FK binding protein FKBP in Mo-MDSCs and PMN- MDSCs from 
tumor-bearing mice is increased and regulates their suppressive 
function [72]. Altogether these results indicate that MDSC activity and 
numbers are modulated by immunossupressive treatments, such as 
CNI. In contrast, MDSC percentages in our study were not related to 
immunosuppressant levels in peripheral blood. As our cohort of LTR 
was under the same immunosuppressive regimen, potential differences 
between treatments, with respect to their effect on MDSC frequency 
or function cannot be determined which still remains a limitation. In 
contrast with previous reports [23,24] we observed that 90 and 180 
days post-transplant Mo-MDSCs percentages were higher in patients 
who reject compared to those who do not reject.

Heart, Corneal, Pancreatic islets and Skin Transplantation
Ling Zhou, et al. found a cardioprotective role of MDSCs in 

heart failure [73] although the human MDSC response in heart 
transplantation remains unstudied. In murine models, several studies 
demonstrated MDSC were required for the induction of transplantation 
tolerance [47,74,75]. Some authors reported the development of MDSC 
and induction of tolerance after treating recipients with rapamycin and 
costimulatory blockade with anti-CD40L mAb [76,77] in contrast to 
mice treated with either rapamycin or anti-CD40L mAb alone [77]. 
Nakamura T, et al. further observed that rapamycin increased PD-L1 
expression on MDSC that accumulate in the cardiac allograft [78]. The 
effect of dexamethasone for the induction of MDSC was also reported 
[79] by Zhao, et al. In corneal allograft animal models it was observed 
an increase in allograft survival after MDSC infusion [80]. These data 
suggest that transplantation may lead to recipient derived MDSCs 
able to suppress anti-donor responses [81]. Further, it was observed 
an expansion of Mo-MDSC after dexamethasone administration [82] 
and rapamycin nano-micelle (RNM) ophthalmic solution treatment 
delayed rejection and expanded MDSC in allografts [83]. In pancreatic 
Islet transplantation MDSC infusion prolonged allograft survival and 
increased the number of Tregs within the graft [84,85]. MDSC generated 
by hepatic stellate cells (HCS) increased islets allograft survival [84]. 
As well as heart, corneal and pancreatic islet transplantation there is 
a lack of studies regarding skin human transplantation but several 
animal models pointed the ability of MDSC to increase skin graft 
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survival [86,87]. Yang, et al. described that TNFα induced MDSC 
in vitro and the expression of iNOS was necessary for suppression 
of T cell proliferation [88]. The role of iNOS in MDSC function was 
also described by Wu, et al. [89]. Liao, et al. reported induced iNOS 
expression and NO production in MDSC after dexamethasone 
treatment [90]. Rapamycin downregulates iNOS expression in MDSC, 
and the suppressive activity and MDSC numbers are significantly 
reduced after rapamycin treatment in an allogeneic skin transplant 
model [91]. The results confirm the administration of glucocorticoids 
as a therapeutic approach by increasing the development of MDSC and 
point mTOR as an intrinsic factor essential for the differentiation and 
immunosuppressive function of MDSCs.

Conclusions and future directions
MDSC are a group of immunoregulatory myeloid cells that are 

gaining attention throughout the years in the field of transplantation. 
Several animal models have point them as important regulators in 
transplantation but in human transplantation their role as a biomarkers 
and their potential use as immunotherapy to promote tolerance 
remains under investigation.

A major challenge in immune monitoring of transplant recipients 
is distinguishing between biomarkers changes as a consequence 
of underlying alloimmune responses from those related to 
immunosuppressive therapy. Conventional phenotyping of human 
Mo-MDSC subsets relies upon HLA-DR expression [17]. Although 
it may be possible MDSC increase naturally after transplantation [15] 
provided evidence supports that HLA-DR expression is influenced 
by standard immunosuppression, especially glucocorticoids 
[33,34,37,56] which supports the need for new and specific markers 
to identify human MDSC. Then one of the more important goals for 
future studies is to define specific cell-surface markers and gating 
strategies that uniquely identify MDSC subpopulations [24]. The lack 
of specific markers also obliges to perform functional assays to check 
human MDSC function. In addition functional assays are difficult 
to implement due to their technical complexity and high intra-assay 
variability. In this regard, both the definition of specific markers and 
identification of the transcriptomic profile of human MDSC may shed 
light on the field [92]. Even though there are some studies regarding 
the effect of immunsuppressive drugs on human MDSC function, the 
effect of the current main immunosuppressive regiments on MDSCs 
should be further studied.

MDSC represent a promising therapeutic approach in solid organ 
transplantation but additional investigations are needed to fully 
understand their role in tolerance and to achieve immunosuppression 
withdrawal or minimization.
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