Take a look at the Recent articles

A novel and exquisite approach to single layer bioinorganic membranes

Ricardo Gobato

Laboratory of Biophysics and Molecular Modeling Genesis, State Secretariat of Education of Parana, 86130-000, Parana, Brazil

E-mail : bhuvaneswari.bibleraaj@uhsm.nhs.uk

Ibtihal Kadhim Kareem Dosh

Kufa University, Faculty of Education, Department of Chemistry, An Najaf, Iraq

Alireza Heidari

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

Abhijit Mitra

Department of Marine Science, University of Calcutta, 35 B.C. Road Kolkata, 700019, India

Marcia Regina Risso Gobato

Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil

DOI: 10.15761/DOMR.1000354

Article
Article Info
Author Info
Figures & Data

The work characterizes the Raman spectrum of the new nano-molecule C13H20BeLi2SeSi / C13H19BeLi2SeSi, nano-molecule Kurumi. Calculations obtained in the methods Restrict Hartree-Fock of the first principles (ab initio), on the set of basis used indicate that the simulated molecule C13H20BeLi2SeSi / C13H19BeLi2SeSi features the structure polar-apolar-polar predominant. The set of basis used that have been correlation-consistent polarized Triple-zeta (CC-pVTZ) and Pople’s basis sets six gaussian functions in the shell, three double zeta Gaussian functions, Slater type orbitals with polarization function (6-311G** (3df, 3pd)). In the CC-pVTZ base set, the charge density in relation to 6-311G** (3df, 3pd) is 50% lower. The length of the molecule C13H20BeLi2 SeSi is of 15.799Å. The Raman spectrum was calculated indicating the characteristic of the nano-molecule and their frequency (cm-1) were obtained in the set of bases used. The highest for Raman scattering activities peaks are in the frequency 3,348cm-1 with 7.107609729 Å4/amu and 2,163 cm-1 with 8.902805583 Å4/amu, for CC-pVTZ and 6-311G** (3df, 3pd), respectively. As the bio-inorganic molecule C13H20BeLi2SeSi is the basis for a new creation of a biomembrane, later calculations that challenge the current concepts of biomembrane should advance to such a purpose. The new nano-molecule Kurumi is well characterizing computationally. As its scientific name 3-lithio-3-(6- {3-selena-8-beryllatricyclo [3.2.1.0²,⁴] oct-6-en-2-yl} hexyl) -1-sila-2-lithacyclopropane [1-100]

Results and discussion

Our results take place from the findings of the molecular dynamics of bio-inorganic nano-molecule C13H20BeLi2SeSi. The results were summarized and shown in Figures 1 [1-100].

Figure 1. Representation of the molecular structure of C13H19BeLi2SeSi, Nano-molecule Kurumi, 3-lithio-3-(6-{3-selena-8-beryllatricyclo[3.2.1.0²,⁴]oct-6-en-2-yl}hexyl)-1-sila-2-lithacyclopropane, obtained through computer via ab initio calculation method RHF/CC-pVTZ [1-100]

Nano-Molecule Kurumi

The Figure 1 representation of the molecular structure of C13H20BeLi2SeSi / C13H19BeLi2SeSi, Nano-molecule Kurumi, 3-lithio-3-(6-{3-selena-8-beryllatricyclo[3.2.1.0²,⁴]oct-6-en-2-yl}hexyl)-1-sila-2-lithacyclopropane [1-100].

References

  1. F. James Holler, Douglas A. Skoog and Stanley R. Crouch. Principles of Instrumental Analysis (6th ed.). Cengage Learning. 200, p. 9. ISBN 978-0-495-01201-6.
  2. Fox Electronics. Quartz Crystal Theory of Operation and Design Notes. Oscillator Theory of Operation and Design Notes. 2008. Available in: April 16, 2019. URL: https://web.archive.org/web/20110725032851/http://www.foxonline.com/techdata.htm.
  3. R. E. Newnham. Properties of materials. Anisotropy, Simmetry, Structure. Oxford University Press, New York, 2005.
  4. C. D. Gribble and A. J. Hall. A Practical Introduction to Optical Mineralogy. 1985.
  5. Creative Commons. (CC-BY 4.0). Wikipedia, The Free Encyclopedia, May 2019. URL: https://creativecommons.org/licenses/by/4.0/.
  6. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 2019 – 3 (2). AJBSR. MS. ID. 000659. DOI: 10.34297/AJBSR.2019.03.000659.
  7. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal International Journal of Advanced Chemistry, 7 (2) (2019) 77-81. doi: 10.14419/ijac.v7i1.29176.
  8. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. June 17, 2019. URL:
    https://www.researchgate.net/publication/333817526_Rhodochrosite_as_Crystal_Oscillator?enrichId=rgreq-26dd55b5b6e53fd29f8cf00042058725-XXX&enrichSource=Y292ZXJQYWdlOzMzMzgxNzUyNjtBUzo3NzA3NDE0MTkxMjY3ODRAMTU2MDc3MDQ4MjgwOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf.
  9. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 2019 - 3(2). DOI: 10.34297/AJBSR.2019.03.000659.
  10. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. viXra.org, Condensed Matter, viXra: 1908. 0295. http://vixra.org/abs/1908.0295.
  11. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. Rhodochrosite Optical Indicatrix. Peer Res Nest. 2019 – 1 (3). PNEST. 19.08.020.
  12. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. Rhodochrosite Optical Indicatrix. viXra.org > Condensed Matter > viXra: 1908. 0455. URL: http://vixra.org/abs/1908.0455. Available in: Aug 22, 2019.
  13. Rob Lavinsky, iRocks.com, CC-BY-SA-3.0. 2010. URL: https://de.wikipedia.org/wiki/Rhodochrosit#/media/Datei:Apatite-Rhodochrosite-Fluorite-169799.jpg. Available in: November 4, 2019.
  14. Gemstone Qualities. Rhodochrosite. 2019. Available in: November 4, 2019. URL: https://www.roseheartjewels.co.uk/rhodochrosite/
  15. N. Levine. Quantum Chemistry. Pearson Education (Singapore) Pte. Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110 092, India, 5th ed. edition, 2003.
  16. Szabo and N. S. Ostlund. Modern Quantum Chemistry. Dover Publications, New York, 1989.
  17. M. S. Gordon et al. General atomic and molecular electronic structure system (GAMESS). J. Comput. Chem., 14: 1347–1363, 1993.
  18. K. Ohno, K. Esfarjani and Y. Kawazoe. Computational Material Science. Springer-Verlag, Berlin, 1999.
  19. K. Wolfram and M. C. Hothausen. Introduction to DFT for Chemists. John Wiley & Sons, Inc. New York, 2nd ed. edition, 2001.
  20. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., (136): B864–B871, 1964.
  21. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., (140): A1133, 1965.
  22. R. S. Mulliken, J. Chem. Phys. 1955 23, 1833-1840.
  23. G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam, 1976.
  24. Ferreira, M. M. C. J. Phys. Chem. 1990, 94, 3220-3223.
  25. Biarge, J. F.; Herranz, J.; Morcillo, J. An. R. Soc. Esp. Fis. Quim. Ser. A 1961, A57, 81.
  26. Person, W. B.: Newton, J. H. J. Chem. Phys. 1974, 61. 1040.
  27. King, W. T.; Mast, G. B. J. Phys. Chem. 1976,80,2521.
  28. King, W. T. Vibrational Intensities in Infrared and Ramon Spectra: Person, W. B., Zerbi, G. Eds.; Elsevier: Amsterdam, 1982; Chapter 6.
  29. Person, W. B.; Zilles, B.; Rogers, J. D.; Maia, R. G. A. J. Mol. Struct. 1982, 80, 297.
  30. Zilles. B. A. Ph. D. Dissertation, University of Florida, 1980.
  31. Zilles, B. A.; Person, W. 8. J. Chem. Phys. 1983, 79, 65.
  32. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. “Hartree-fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation”, Radiation Science and Technology. Vol. 5, No. 3, 2019, pp. 27-36. doi: 10.11648/j.rst.20190503.12.
  33. Ricardo Gobato, Ibtihal Kadhim Kareem Dosh, Alireza Heidari, Abhijit Mitra, Marcia Regina Risso Gobato. “Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrotron Radiation, and Absorption the Tumoral and Non-Tumoral Tissues”, Arch Biomed Eng & Biotechnol. 3(2): 2019. ABEB.MS.ID.000558. DOI: 10.33552/ABEB.2019.03.000558.
  34. M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry: the first forty years. Elsevier. C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria (editors), pages 1167–1189, 2005. Amsterdam.
  35. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Inorganic arrangement crystal beryllium, lithium, selenium and silicon”. In XIX Semana da Física. Simpósio Comemorativo dos 40 anos do Curso de Física da Universidade Estadual de Londrina, Brazil, 2014. Universidade Estadual de Londrina (UEL).
  36. R. Gobato, “Benzocaína, um estudo computacional”, Master’s thesis, Universidade Estadual de Londrina (UEL), 2008.
  37. R. Gobato, “Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola L.)”. Parana J. Sci. Edu, 3 (1): 1–9, January 2017.
  38. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - (Citrus Latifolia Var Tahiti)”. Parana J. Sci. Edu., 1 (1): 1–10, November 2015.
  39. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Allocryptopine, Berberine, Chelerythrine, Copsitine, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Linn”. Parana J. Sci. Edu., 1 (2): 7–16, December 2015.
  40. R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences. Vol. 2, No. 1, 2018, pp. 1-9. doi: 10.11648/j.ijaos.20180201.11.
  41. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Molecular geometry of alkaloids present in seeds of mexican prickly poppy”. Cornell University Library. Quantitative Biology, Jul 15, 2015. arXiv: 1507. 05042.
  42. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Study of the molecular electrostatic potential of D-Pinitol an active hypoglycemic principle found in Spring flower Three Marys (Bougainvillea species) in the Mm+ method”. Parana J. Sci. Educ., 2 (4): 1–9, May 2016.
  43. R. Gobato, D. F. G. Fedrigo, A. Gobato, “Avro: key component of Lockheed X-35”, Parana J. Sci. Educ., 1 (2): 1–6, December 2015.
  44. R. Gobato, D. F. G. Fedrigo, A. Gobato, “LOT-G3: Plasma Lamp, Ozonator and CW Transmitter”, Ciencia e Natura, 38 (1), 2016.
  45. R. Gobato, “Matter and energy in a non-relativistic approach amongst the mustard seed and the faith. A metaphysical conclusion”. Parana J. Sci. Educ., 2 (3): 1–14, March 2016.
  46. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Harnessing the energy of ocean surface waves by Pelamis System”, Parana J. Sci. Educ., 2 (2): 1–15, February 2016.
  47. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Mathematics for input space probes in the atmosphere of Gliese 581d”, Parana J. Sci. Educ., 2 (5): 6–13, July 2016.
  48. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Study of tornadoes that have reached the state of Parana”. Parana J. Sci. Educ., 2 (1): 1–27, 2016.
  49. R. Gobato, M. Simões F. “Alternative Method of RGB Channel Spectroscopy Using a CCD Reader”, Ciencia e Natura, 39 (2), 2017.
  50. R. Gobato, A. Heidari, “Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi”, Science Journal of Analytical Chemistry, 5 (5): 76–85, September 2017.
  51. M. R. R. Gobato, R. Gobato, A. Heidari, “Planting of Jaboticaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, 3 (1): 1–9, March 18, 2018.
  52. R. Gobato, “The Liotropic Indicatrix”, 2012, 114 p. Thesis (Doctorate in Pysics). Universidade Estadual de Londrina, Londrina, 2012.
  53. R. Gobato, A. Heidari, “Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi”, Science Journal of Analytical Chemistry, Vol. 5, No. 6, Pages 76–85, 2017.
  54. R. Gobato, “O universo dos cristais líquidos”, Cadernos PDE, Secretaria de Estado da Educação do Paraná., Vol. 2, Pages 1–15, 2009. ISBN 978-85-8015-053-7. www.diaadiaeducacao.pr.gov.br›2009_uel_fisica_md_ricardo_gobato.
  55. R. Gobato, A. Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol. 20 (1), 1–23, 2018.
  56. Heidari, R. Gobato. “A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells–Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ9–Tetrahydrocannabinol (THC) [(–)–trans–Δ9–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti–Cancer Nano Drugs by Coassembly of Dual Anti–Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Parana Journal of Science and Education, v. 4, n. 6, pp. 1–17, 2018.
  57. Heidari, R. Gobato, “Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet–Visible (UV–Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Parana Journal of Science and Education, v. 4, n. 6, pp. 18–33, 2018.
  58. R. Gobato, A. Heidari, “Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H”, J Nanomed Res., 7 (4): 241-252, 2018.
  59. S. K. Agarwal, S. Roy, P. Pramanick, P. Mitra, R. Gobato, A. Mitra, “Marsilea quadrifolia: A floral species with unique medicinal properties”, Parana J. Sci. Educ., v. 4, n. 5, (15–20), July 1, 2018.
  60. Mitra, S. Zaman, R. Gobato. “Indian Sundarban Mangroves: A potential Carbon Scrubbing System”. Parana J. Sci. Educ., v. 4, n. 4, (7–29), June 17, 2018.
  61. O. Yarman, R. Gobato, T. Yarman, M. Arik. “A new Physical constant from the ratio of the reciprocal of the “Rydberg constant” to the Planck length”. Parana J. Sci. Educ., v. 4, n. 3, (42–51), April 27, 2018.
  62. R. Gobato, M. Simões F., “Alternative Method of Spectroscopy of Alkali Metal RGB”, Modern Chemistry. Vol. 5, No. 4, 2017, pp. 70–74. https://doi:10.11648/j.mc.20170504.13.
  63. D. F. G. Fedrigo, R. Gobato, A. Gobato, “Avrocar: a real flying saucer”, Cornell University Library. 24 Jul 2015. arXiv: 1507.06916v1 [physics.pop–ph].
  64. M, Simões F., A. J. Palangana, R. Gobato, O. R. Santos, "Micellar shape anisotropy and optical indicatrix in reentrant isotropic—nematic phase transitions", The Journal of Chemical Physics, 137, 204905 (2012); https://doi.org/10.1063/1.4767530.
  65. Heidari, R. Gobato, “Putrescine, Cadaverine, Spermine and Spermidine–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Parana Journal of Science and Education (PJSE)–v. 4, n. 5, (1–14) July 1, 2018.
  66. R. Gobato, A. Heidari, A. Mitra, “The Creation of C13H20BeLi2SeSi. The Proposal of a Bio–Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane”, Arc Org Inorg Chem Sci 3 (4). AOICS. MS. ID. 000167, 2018.
  67. R. Gobato, A. Heidari, A. Mitra, “Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H”, ResearchGate, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326201181, 2018.
  68. Heidari, R. Gobato, “First–Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)–3,7,15–Trihydroxy–12,13–Epoxytrichothec–9–En–8–One)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Parana Journal of Science and Education, Vol. 4, No. 6, pp. 46–67, 2018.
  69. R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G**(3df, 3pd)”, American Journal of Quantum Chemistry and Molecular Spectroscopy, Vol. 2, No. 1, pp. 9–17, 2018.
  70. R. Gobato, M. R. R. Gobato, A. Heidari, “Raman Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree–Fock Methods in the Basis Set CC–pVTZ and 6–311G** (3df, 3pd)”, International Journal of Advanced Engineering and Science, Volume 7, Number 1, Pages 14–35, 2019.
  71. Heidari, R. Gobato, “Evaluating the Effect of Anti–Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation”, Trends in Res, Volume 2 (1): 1–8, 2019.
  72. Heidari, R. Gobato, “Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Trends in Res, Volume 2 (1): 1–8, 2019.
  73. Heidari, R. Gobato, “Pros and Cons Controversy on Malignant Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2 (1): 1–8, 2019.
  74. Heidari, R. Gobato, “Three–Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti–Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation”, Trends in Res, Volume 2 (1): 1–8, 2019.
  75. Heidari, R. Gobato, “Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend”, Trends in Res, Volume 2 (1): 1–8, 2019.
  76. Heidari, R. Gobato, “High–Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Trends in Res, Volume 2 (2): 1–9, 2019.
  77. R. Gobato, M. R. R. Gobato, A. Heidari, “Storm Vortex in the Center of Paraná State on June 6, 2017: A Case Study”, Sumerianz Journal of Scientific Research, Vol. 2, No. 2, Pages 24–31, 2019.
  78. R. Gobato, M. R. R. Gobato, A. Heidari, “Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree–Fock Methods in the Basis Set RHF/CC– pVTZ and RHF/6–311G** (3df, 3pd): An Experimental Challenge to Chemists”, Chemistry Reports, Vol. 2, No. 1, Pages 1–26, 2019.
  79. R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “New Nano–Molecule Kurumi–C13H 20BeLi2SeSi/C13H19BeLi2SeSi, and Raman Spectroscopy Using ab initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G** (3df, 3pd)”, J Anal Pharm Res. 8 (1): 1-6, 2019.
  80. R. Gobato, M. R. R. Gobato, A. Heidari, “Evidence of Tornado Storm Hit the Counties of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil”, Sci Lett 7 (1), 9 Pages, 2019.
  81. Moharana Choudhury, Pardis Fazli, Prosenjit Pramanick, Ricardo Gobato, Sufia Zaman, Abhijit Mitra, “Sensitivity of the Indian Sundarban mangrove ecosystem to local level climate change”, Parana Journal of Science and Education. Vol. 5, No. 3, 2019, pp. 24-28.
  82. Arpita Saha, Ricardo Gobato, Sufia Zaman, Abhijit Mitra, “Biomass Study of Mangroves in Indian Sundarbans: A Case Study from Satjelia Island”, Parana Journal of Science and Education. Vol. 5, No. 2, 2019, pp. 1-5.
  83. Nabonita Pal, Arpan Mitra, Ricardo Gobato, Sufia Zaman, Abhijit Mitra, “Natural Oxygen Counters in Indian Sundarbans, the Mangrove Dominated World Heritage Site”, Parana Journal of Science and Education. Vol. 5, No. 2, 2019, pp. 6-13.
  84. Ricardo Gobato, Victoria Alexandrovna Kuzmicheva, Valery Borisovich Morozov, ―Einstein's hypothesis is confirmed by the example of the Schwarzschild problem”, Parana Journal of Science and Education, Vol. 5, No. 1, 2019, pp. 1-6.
  85. Sufia Zaman, Ricardo Gobato, Prosenjit Pramanick, Pavel Biswas, Uddalok Chatterjee, Shampa Mitra, Abhijit Mitra, “Water quality of the River Ganga in and around the city of Kolkata during and after Goddess Durga immersion”, Parana Journal of Science and Education, Vol. 4, No. 9, 2018, pp. 1-7.
  86. Ozan Yarman, Metin Arik, Ricardo Gobato, Tolga Yarman, Clarification of “Overall Relativistic Energy” According to Yarman’s Approach.”, Parana Journal of Science and Education., v. 4, n. 8, 2018, pp. 1-10.
  87. Sufia Zaman, Utpal Pal, Ricardo Gobato, Alekssander Gobato, Abhijit Mitra, “The Changing Trends of Climate in Context to Indian Sundarbans”, Parana Journal of Science and Education, Vol. 4, No. 7, 2018, pp. 24-28.
  88. Suresh Kumar Agarwal, Sitangshu Roy, Prosenjit Pramanick, Prosenjit Mitra, Ricardo Gobato and Abhijit Mitra. Parana Journal of Science and Education. Vol. 4, No. 5, 2018, pp. 15-20.
  89. Ricardo Gobato and Marcia Regina Risso Gobato, “Evidence of Tornadoes Reaching the Countries of Rio Branco do Ivai and Rosario de Ivai, Southern Brazil on June 6, 2017”, Climatol Weather Forecasting 2018, 6: 4. DOI: 10.4172/2332-2594.1000242.
  90. Ricardo Gobato. “New Nano-Molecule Kurumi and Raman Spectroscopy using ab initio, Hartree-Fock Method” Am J Biomed Sci & Res. 2019-2 (4). AJBSR. MS. ID. 000594. DOI: 10.34297/AJBSR.2019.02.000594.
  91. D. L. Graf, Rhodochrosite, Crystallographic tables for the rhombohedral carbonates, American Mineralogist 46 (1961) 1283-1316.
  92. E. N. Maslen, V. A. Streltsov, N. R. Streltsova, N. Ishizawa, Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3, Acta Crystallographica B51 (1995) 929-939.
  93. R. Wyckoff, The crystal structures of some carbonates of the calcite group, American Journal of Science 50 (1920) 317-360.
  94. D. Marcus, D. E. Hanwell, D. C. Curtis, T. V Lonie, E. Zurek, G. R. Hutchison, “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform” Journal of Cheminformatics 2012, 4: 17.
  95. J. Cioslowski, Phys. Rev. Lett., 1989, 62, 1469.
  96. Paul von Ragu Schleyer, Encyclopedia of computational chemistry, New York, J. Wiley, 1998.
  97. Mulliken, R. S. "Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I". The Journal of Chemical Physics. (1955). 23 (10): 1833–1840. Bibcode: 1955JChPh. 23.1833M. doi: 10.1063/1.1740588.
  98. W. J. Stevens, H. Basch, and M. Krauss, “Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms,” J. Chem. Phys., 81 (1984) 6026-33. DOI: 10.1063/1.447604.
  99. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and 5th-row atoms,” Can. J. Chem., 70 (1992) 612-30. DOI: 10.1139/v92-085.
  100. T. R. Cundari and W. J. Stevens, “Effective core potential methods for the lanthanides,” J. Chem. Phys., 98 (1993) 5555-65. DOI: 10.1063/1.464902.

Editorial Information

Founding Editor-in-Chief

Shigeru Watanabe
Meikai University Japan

Editor-in-Chief

Vagner Rodrigues
Federal University of Minas Gerais

Article Type

Mini Review Article

Publication history

Received: June 05, 2020
Accepted: June 22, 2020
Published: June 24, 2020

Copyright

©2020 Gobato R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation

Gobato R, Dosh IKK, Heidari A, Mitra A, Gobato MRR (2020) A novel and exquisite approach to single layer bioinorganic membranes. Dent Oral Maxillofac Res 6: DOI: 10.15761/DOMR.1000354

Corresponding author

Dr. Alireza Heidari

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

E-mail : bhuvaneswari.bibleraaj@uhsm.nhs.uk

Figure 1. Representation of the molecular structure of C13H19BeLi2SeSi, Nano-molecule Kurumi, 3-lithio-3-(6-{3-selena-8-beryllatricyclo[3.2.1.0²,⁴]oct-6-en-2-yl}hexyl)-1-sila-2-lithacyclopropane, obtained through computer via ab initio calculation method RHF/CC-pVTZ [1-100]